Nectar Attracts Foraging Honey Bees with Components of Their Queen Pheromones
详细信息    查看全文
  • 作者:Fanglin Liu ; Jie Gao ; Nayan Di ; Lynn S. Adler
  • 关键词:Bee mandibular pheromone ; Chemical mimicry ; Nectar ; Phenolics ; Pollination
  • 刊名:Journal of Chemical Ecology
  • 出版年:2015
  • 出版时间:November 2015
  • 年:2015
  • 卷:41
  • 期:11
  • 页码:1028-1036
  • 全文大小:633 KB
  • 参考文献:Adler LS (2000) The ecological significance of toxic nectar. Oikos 91:409–420CrossRef
    Adler LS, Irwin RE (2005) Ecological costs and benefits of defenses in nectar. Ecology 86:2968–2978CrossRef
    Adler LS, Seifert MG, Wink M, Morse GE (2012) Reliance on pollinators predicts defensive chemistry across tobacco species. Ecol Lett 15:1140–1148CrossRef PubMed
    Beggs KT, Glendining KA, Marechal NM, Vergoz V, Nakamura I, Slessor KN, Mercer AR (2007) Queen pheromone modulates brain dopamine function in worker honey bees. Proc Natl Acad Sci U S A 104:2460–2464PubMedCentral CrossRef PubMed
    Björkman T (1995) The effectiveness of heterostyly in preventing illegitimate pollination in dish-shaped flowers. Sex Plant Reprod 8:143–146CrossRef
    Briscoe AD, Chittka L (2001) The evolution of color vision in insects. Annu Rev Entomol 46:471–510CrossRef PubMed
    Cawoy V, Kinet J-M, Jacquemart A-L (2008) Morphology of nectaries and biology of nectar production in the distylous species Fagopyrum esculentum. Ann Bot 102:675–684PubMedCentral CrossRef PubMed
    Chaffiol A, Dupuy F, Barrozo RB, Kropf J, Renou M, Rospars J-P, Anton S (2014) Pheromone modulates plant odor responses in the antennal lobe of a moth. Chem Senses 39:451–463CrossRef PubMed
    Dötterl S, Vereecken NJ (2010) The chemical ecology and evolution of bee-flower interactions: a review and perspectives. Can J Zool 88:668–697CrossRef
    Elliott SE, Irwin RE, Adler LS, Williams NM (2008) The nectar alkaloid, gelsemine, does not affect offspring performance of a native solitary bee, Osmia lignaria (Megachilidae). Ecol Entomol 33:298–304CrossRef
    Galen C, Kaczorowski R, Todd SL, Geib J, Raguso RA (2011) Dosage-dependent impacts of a floral volatile compound on pollinators, larcenists, and the potential for floral evolution in the alpine skypilot Polemonium viscosum. Am Nat 177:258–272CrossRef PubMed
    Hartmann T, Theuring C, Bernays E (2003) Are insect-synthesized retronecine esters (creatonotines) the precursors of the male courtship pheromone in the arctiid moth Estigmene acrea? J Chem Ecol 29:2603–2608CrossRef PubMed
    Heil M (2011) Nectar: generation, regulation and ecological functions. Trends Plant Sci 16:191–200CrossRef PubMed
    Heil M, Barajas‐Barron A, Orona‐Tamayo D, Wielsch N, Svatos A (2014) Partner manipulation stabilises a horizontally transmitted mutualism. Ecol Lett 17:185–192CrossRef PubMed
    Hojo MK, Pierce NE, Tsuji K (2015) Lycaenid caterpillar secretions manipulate attendant ant behavior. Curr Biol 25:2260–2264CrossRef PubMed
    Kayode J, Oyeyemi SD (2014) Pollen analysis of Apis mellifera honey collected from Nigeria. Am J Agric Forest 2:226–231CrossRef
    Keeling CI, Otis GW, Hadisoesilo S, Slessor KN (2001) Mandibular gland component analysis in the head extracts of Apis cerana and Apis nigrocincta. Apidologie 32:243–252CrossRef
    Kessler D, Baldwin IT (2007) Making sense of nectar scents: the effects of nectar secondary metabolites on floral visitors of Nicotiana attenuata. Plant J 49:840–854CrossRef PubMed
    Kessler D, Gase K, Baldwin IT (2008) Field experiments with transformed plants reveal the sense of floral scents. Science 321:1200–1202CrossRef PubMed
    Leiss KA, Maltese F, Choi YH, Verpoorte R, Klinkhamer PG (2009) Identification of chlorogenic acid as a resistance factor for thrips in chrysanthemum. Plant Physiol 150:1567–1575PubMedCentral CrossRef PubMed
    Liang Y, Cao W, Chen W-J, Xiao X-H, Zheng J-B (2009) Simultaneous determination of four phenolic components in citrus honey by high performance liquid chromatography using electrochemical detection. Food Chem 114:1537–1541CrossRef
    Liu F, He J, Fu W (2005) Highly controlled nest homeostasis of honey bees helps deactivate phenolics in nectar. Naturwissenschaften 92:297–299CrossRef PubMed
    Mao W, Schuler MA, Berenbaum MR (2015) A dietary phytochemical alters caste-associated gene expression in honey bees. Sci Adv 1:e1500795PubMedCentral CrossRef PubMed
    Matsuo T, Sugaya S, Yasukawa J, Aigaki T, Fuyama Y (2007) Odorant-binding proteins OBP57d and OBP57e affect taste perception and host-plant preference in Drosophila sechellia. PLoS Biol 5:e118PubMedCentral CrossRef PubMed
    McArt SH, Koch H, Irwin RE, Adler LS (2014) Arranging the bouquet of disease: floral traits and the transmission of plant and animal pathogens. Ecol Lett 17:624–636CrossRef PubMed
    Mukhopadhyay SK, Gupta S, Das AP, Bera S (2007) The beekeeping potential of Sub-Himalayan West Bengal, India: a palynological assessment of honey. J Apic Res 46:165
    Ohnishi O (1991) Discovery of the wild ancestor of common buckwheat. Fagopyrum 11:5–10
    Plettner E, Otis GW, Wimalaratne PDC, Winston ML, Slessor KN, Pankiw T, Punchihewa PWK (1997) Species-and caste-determined mandibular gland signals in honeybees (Apis). J Chem Ecol 23:363–377CrossRef
    Reddy GV, Guerrero A (2004) Interactions of insect pheromones and plant semiochemicals. Trends Plant Sci 9:253–261CrossRef PubMed
    Ruttner F (1988) Biogeography and taxonomy of honeybees. Springer, BerlinCrossRef
    Schiestl FP (2010) The evolution of floral scent and insect chemical communication. Ecol Lett 13:643–656CrossRef PubMed
    Schiestl FP, Johnson SD, Raguso RA (2010) Floral evolution as a figment of the imagination of pollinators. Trends Ecol Evol 25:382–383CrossRef PubMed
    Schulz S (1998) Insect-plant interactions − metabolism of plant compounds to pheromones and allomones by Lepidoptera and leaf beetles. Eur J Org Chem 1998:13–20CrossRef
    Sharrock R, Sinclair FL, Gliddon C, Rao IM, Barrios E, Mustonen P, Smithson P, Jones D, Godbold D (2004) A global assessment using PCR techniques of mycorrhizal fungal populations colonising Tithonia diversifolia. Mycorrhiza 14:103–109CrossRef PubMed
    Sugahara M, Izutsu K, Nishimura Y, Sakamoto F (2013) Oriental orchid (Cymbidium floribundum) attracts the Japanese honeybee (Apis cerana japonica) with a mixture of 3-hydroxyoctanoic acid and 10-hydroxy-(E)-2-decenoic acid. Zool Sci 30:99–104CrossRef PubMed
    Thomson JD, Draguleasa MA, Tan MG (2015) Flowers with caffeinated nectar receive more pollination. Arthropod Plant Interact 9:1–7CrossRef
    Tiedeken EJ, Stout JC, Stevenson PC, Wright GA (2014) Bumblebees are not deterred by ecologically relevant concentrations of nectar toxins. J Exp Biol 217:1620–1625PubMedCentral CrossRef PubMed
    Vereecken NJ, Schiestl FP (2008) The evolution of imperfect floral mimicry. Proc Natl Acad Sci U S A 105:7484–7488PubMedCentral CrossRef PubMed
    Wright G, Baker D, Palmer M, Stabler D, Mustard J, Power E, Borland A, Stevenson P (2013) Caffeine in floral nectar enhances a pollinator’s memory of reward. Science 339:1202–1204PubMedCentral CrossRef PubMed
    Zhao G, Li J, Di N, Liu F (2014) Nectar phenolics drive cross visits between dimorphic flowers by honey bees. J Apic Res 53:489–492CrossRef
  • 作者单位:Fanglin Liu (1) (2)
    Jie Gao (2)
    Nayan Di (2)
    Lynn S. Adler (3)

    1. Institute of Technical Biology and Agricultural Engineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Anhui, China
    2. Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yunnan, 666303, China
    3. Department of Biology, University of Massachusetts, 611 N. Pleasant St., Amherst, MA, 01003, USA
  • 刊物主题:Ecology; Biochemistry, general; Entomology; Biological Microscopy; Agriculture;
  • 出版者:Springer US
  • ISSN:1573-1561
文摘
Floral nectar often contains chemicals that are deterrent to pollinators, presenting potential challenges to outcrossing plant species. Plants may be able to co-opt pollinator chemical signals to mitigate the negative effects of nectar deterrent compounds on pollination services. We found that buckwheat (Fagopyrum esculentum) and Mexican sunflower (Tithonia diversifolia) produce nectar with abundant phenolics, including three components of the Apis honeybee queen mandibular pheromone (QMP). In addition, these nectars contain a non-pheromonal phenolic, chlorogenic acid (CA), which was toxic to honeybees, and T. diversifolia nectar also contained isochlorogenic acid (IA). Fresh nectar or solutions containing nectar phenolics reduced Apis individual feeding compared to sucrose solutions. However, freely foraging bees preferred solutions with QMP components to control solutions, and QMP components over-rode or reversed avoidance of CA and IA. Furthermore, prior exposure to the presence or just the odor of QMP components removed the deterrent effects of CA and IA. By mimicking the honey bee pheromone blend, nectar may maintain pollinator attraction in spite of deterrent nectar compounds.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700