Enhancement of SO2 gas sensing performance using ZnO nanorod thin films: the role of deposition time
详细信息    查看全文
  • 作者:Brian Yuliarto ; Muhammad Fazri Ramadhani ; Nugraha…
  • 刊名:Journal of Materials Science
  • 出版年:2017
  • 出版时间:April 2017
  • 年:2017
  • 卷:52
  • 期:8
  • 页码:4543-4554
  • 全文大小:
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Materials Science, general; Characterization and Evaluation of Materials; Polymer Sciences; Continuum Mechanics and Mechanics of Materials; Crystallography and Scattering Methods; Classical Mechanics;
  • 出版者:Springer US
  • ISSN:1573-4803
  • 卷排序:52
文摘
In this study, a sensor with a controllable thin film of zinc oxide (ZnO) nanostructures with different deposition times is successfully synthesized over alumina substrates by chemical bath deposition methods. The seed of ZnO is grown using the dip-coating method, and ZnO thin film is grown by chemical bath deposition (CBD) using the precursor of Zn(NO3)2·4H2O. Chemical bath deposition was done three times to investigate the role of deposition time toward gas sensing properties. Structure, morphology, and composition of the ZnO thin films are characterized using X-ray diffraction, scanning electron microscopy, and energy dispersive spectroscopy, respectively. From the morphology characterization, the ZnO nanostructure from two-times CBD and three-times CBD process shows different sizes and densities of nanorods compared to the ZnO thin film from one-time CBD process. Increasing thickness of thin film is also observed in two-times CBD of ZnO. The gas sensor characterization test results show that the ZnO thin films from two-times CBD can improve the sensing response to be 93% for SO2 gas at 70 ppm of concentration at working temperature of 300 °C, which is an increase of 15% compared to ZnO thin films from one-time CBD. At different operation temperatures, the response of two-times CBD ZnO nanorod increases 20–40% over one-time CBD ZnO nanorod. The three-times CBD ZnO nanorod showed non-order and high-density nanostructure yielding low resistance value and cause low sensor response.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700