Screening enoxaparin tetrasaccharide SEC fractions for 3-O-sulfo-N-sulfoglucosamine residues using [1H,15N] HSQC NMR
详细信息    查看全文
  • 作者:Consuelo N. Beecher ; Matthew S. Manighalam…
  • 关键词:Low molecular weight heparin ; Glycosaminoglycan ; HSQC ; Nuclear magnetic resonance ; Size ; exclusion chromatography ; Strong anion ; exchange chromatography
  • 刊名:Analytical and Bioanalytical Chemistry
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:408
  • 期:6
  • 页码:1545-1555
  • 全文大小:1,584 KB
  • 参考文献:1.Atha DH, Lormeau JC, Petitou M, Rosenberg RD, Choay J. Contribution of monosaccharide residues in heparin binding to antithrombin-III. Biochemistry. 1985;24:6723–9.CrossRef
    2.Johnson DJD, Li W, Adams TE, Huntington JA. Antithrombin-S195A factor Xa-heparin structure reveals the allosteric mechanism of antithrombin activation. Embo J. 2006;25:2029–37.CrossRef
    3.Ferro DR, Provasoli A, Ragazzi M, Torri G, Casu B, Gatti G, et al. Evidence for conformational equilibrium of the sulfated L-iduronate residue in heparin and in synthetic heparin mono- and oligosaccharides: NMR and force-field studies. J Am Chem Soc. 1986;108:6773–8.CrossRef
    4.Baldwin J, Shukla D, Tiwari V. Members of 3-O-sulfotransferases (3-OST) family: a valuable tool from zebrafish to humans for understanding herpes simplex virus entry. Open Virol J. 2013;7:5–11.CrossRef
    5.Thacker BE, Xu D, Lawrence R, Esko JD. Heparan sulfate 3-O-sulfation: a rare modification in search of a function. Matrix Biol. 2014;35:60–72.CrossRef
    6.O'Donnell CD, Tiwari V, Oh M-J, Shukla D. A role for heparan sulfate 3-O-sulfotransferase isoform 2 in herpes simplex virus type 1 entry and spread. Virology. 2006;346:452–9.CrossRef
    7.Baldwin J, Antoine TE, Shukla D, Tiwari V. Zebrafish encoded 3-O-sulfotransferase-2 generated heparan sulfate serves as a receptor during HSV-1 entry and spread. Biochem Bioph Res Co. 2013;432:672–6.CrossRef
    8.Hubbard S, Darmani NA, Thrush GR, Dey D, Burnham L, Thompson JM, et al. Zebrafish-encoded 3-O-sulfotransferase-3 isoform mediates herpes simplex virus type 1 entry and spread. Zebrafish. 2010;7:181–7.CrossRef
    9.Tiwari V, O'Donnell CD, Oh MJ, Valyi-Nagy T, Shukla D. A role for 3-O-sulfotransferase isoform-4 in assisting HSV-1 entry and spread. Biochem Bioph Res Co. 2005;338:930–7.CrossRef
    10.Antoine TE, Yakoub A, Maus E, Shukla D, Tiwari V. Zebrafish 3-O-sulfotransferase-4 generated heparan sulfate mediates HSV-1 entry and spread. PLOS One. 2014;9:e87302.
    11.Xia GQ, Chen JH, Tiwari V, Ju WJ, Li JP, Malmstrom A, et al. Heparan sulfate 3-O-sulfotransferase isoform 5 generates both an antithrombin-binding site and an entry receptor for herpes simplex virus, type 1. J Biol Chem. 2002;277:37912–9.CrossRef
    12.Xu D, Tiwari V, Xia GQ, Clement C, Shukla D, Liu J. Characterization of heparan sulphate 3-O-sulphotransferase isoform 6 and its role in assisting the entry of herpes simplex virus type 1. Biochem J. 2005;385:451–9.CrossRef
    13.Shukla D, Liu J, Blaiklock P, Shworak NW, Bai XM, Esko JD, et al. A novel role for 3-O-sulfated heparan sulfate in herpes simplex virus 1 entry. Cell. 1999;99:13–22.CrossRef
    14.Kaner RJ, Baird A, Mansukhani A, Basilico C, Summers BD, Florkiewicz RZ, et al. Fibroblast growth-factor receptor is a portal of cellular entry for herpes-simplex virus type-1. Science. 1990;248:410–141.CrossRef
    15.Liu J, Shriver Z, Pope RM, Thorp SC, Duncan MB, Copeland RJ, et al. Characterization of a heparan sulfate octasaccharide that binds to herpes simplex virus type 1 glycoprotein D. J Biol Chem. 2002;277:33456–67.CrossRef
    16.Copeland R, Balasubramaniam A, Tiwari V, Zhang F, Bridges A, Linhardt RJ, et al. Using a 3-O-sulfated heparin octasaccharide to inhibit the entry of herpes simplex virus type 1. Biochemistry. 2008;47:5774–83.CrossRef
    17.Hu YP, Lin SY, Huang CY, Zulueta MML, Liu JY, Chang W, et al. Synthesis of 3-O-sulfonated heparan sulfate octasaccharides that inhibit the herpes simplex virus type 1 host-cell interaction. Nat Chem. 2011;3:557–63.CrossRef
    18.Ly M, Leach FE, Laremore TN, Toida T, Amster IJ, Linhardt RJ. The proteoglycan bikunin has a defined sequence. Nat Chem Biol. 2011;7:827–33.CrossRef
    19.Leach III FE, Xiao Z, Laremore TN, Linhardt RJ, Amster IJ. Electron detachment dissociation and infrared multiphoton dissociation of heparin tetrasaccharides. Int J Mass Spectrom. 2011;308:253–9.CrossRef
    20.Leach III FE, Arungundram S, Al-Mafraji K, Venot A, Boons G-J, Amster IJ. Electron detachment dissociation of synthetic heparan sulfate glycosaminoglycan tetrasaccharides varying in degree of sulfation and hexuronic acid stereochemistry. Int J Mass Spectrom. 2012;330–332:152–9.CrossRef
    21.Kailemia MJ, Park M, Kaplan DA, Venot A, Boons GJ, Li LY, et al. High-field asymmetric-waveform ion mobility spectrometry and electron detachment dissociation of isobaric mixtures of glycosaminoglycans. J Am Soc Mass Spectr. 2014;25:258–68.CrossRef
    22.Guerrini M, Zhang ZQ, Shriver Z, Naggi A, Masuko S, Langer R, et al. Orthogonal analytical approaches to detect potential contaminants in heparin. Proc Natl Acad Sci U S A. 2009;106:16956–61.CrossRef
    23.Guerrini M, Beccati D, Shriver Z, Naggi A, Viswanathan K, Bisio A, et al. Oversulfated chondroitin sulfate is a contaminant in heparin associated with adverse clinical events. Nat Biotechnol. 2008;26:669–75.CrossRef
    24.Mascellani G, Guerrini M, Torri G, Liverani L, Spelta F, Bianchini P. Characterization of di- and monosulfated, unsaturated heparin disaccharides with terminal N-sulfated 1,6-anhydro-β-D-glucosamine or N-sulfated 1,6-anhydro-β-D-mannosamine residues. Carbohyd Res. 2007;342:835–42.CrossRef
    25.Langeslay DJ, Beecher CN, Naggi A, Guerrini M, Torri G, Larive CK. Characterizing the microstructure of heparin and heparan sulfate using N-sulfoglucosamine 1H and 15N NMR chemical shift analysis. Anal Chem. 2013;85:1247–55.CrossRef
    26.Pomin VH, Sharp JS, Li XY, Wang LC, Prestegard JH. Characterization of glycosaminoglycans by 15N NMR spectroscopy and in vivo isotopic labeling. Anal Chem. 2010;82:4078–88.CrossRef
    27.Keire DA, Buhse LF, Al-Hakim A. Characterization of currently marketed heparin products: composition analysis by 2D-NMR. Anal Method. 2013;5:2984–94.CrossRef
    28.Linhardt RJ, Turnbull JE, Wang HM, Loganathan D, Gallagher JT. Examination of the substrate-specificity of heparin and heparan sulfate lyases. Biochemistry. 1990;29:2611–7.CrossRef
    29.Desai UR, Wang HM, Linhardt RJ. Specificity studies on the heparin lyases from flavobacterium-heparinum. Biochemistry. 1993;32:8140–5.CrossRef
    30.Jandik KA, Gu KA, Linhardt RJ. Action pattern of polysaccharide lyases on glycosaminoglycans. Glycobiology. 1994;4:289–96.CrossRef
    31.Mardiguian JS, Fournier P. Heparin esters and processes for their preparation. US Patent. Sep 10, 1974. 3835112 A.
    32.Shively JE, Conrad HE. Formation of anhydrosugars in chemical depolymerization of heparin. Biochemistry. 1976;15:3932–42.CrossRef
    33.Rota C, Liverani L, Spelta F, Mascellani G, Tomasi A, Iannone A, et al. Free radical generation during chemical depolymerization of heparin. Anal Biochem. 2005;344:193–203.CrossRef
    34.Zaia J, Costello CE. Compositional analysis of glycosaminoglycans by electrospray mass spectrometry. Anal Chem. 2001;73:233–9.CrossRef
    35.Ziegler A, Zaia J. Size-exclusion chromatography of heparin oligosaccharides at high and low pressure. J Chromatogr B. 2006;837:76–86.CrossRef
    36.Staples GO, Shi XF, Zaia J. Extended N-sulfated domains reside at the nonreducing end of heparan sulfate chains. J Biol Chem. 2010;285:18336–43.CrossRef
    37.Schumacher VA, Schlotzer-Schrehardt U, Karumanchi SA, Shi XF, Zaia J, Jeruschke S, et al. WT1-dependent sulfatase expression maintains the normal glomerular filtration barrier. J Am Soc Nephrol. 2011;22:1286–96.CrossRef
    38.Shao C, Shi XF, Phillips JJ, Zaia J. Mass spectral profiling of glycosaminoglycans from histological tissue surfaces. Anal Chem. 2013;85:10984–91.CrossRef
    39.Shi XF, Shao C, Mao Y, Huang Y, Wu ZLL, Zaia J. LC-MS and LC-MS/MS studies of incorporation of (SO3)-S-34 into glycosaminoglycan chains by sulfotransferases. Glycobiology. 2013;23:969–79.CrossRef
    40.Shastri M, Johns C, Hutchinson J, Khandagale M, Patel R. Ion exchange chromatographic separation and isolation of oligosaccharides of intact low-molecular-weight heparin for the determination of their anticoagulant and anti-inflammatory properties. Anal Bioanal Chem. 2013;405:6043–52.CrossRef
    41.Powell AK, Ahmed YA, Yates EA, Turnbull JE. Generating heparan sulfate saccharide libraries for glycomics applications. Nat Protoc. 2010;5:821–33.CrossRef
    42.Chuang WL, McAllister H, Rabenstein DL. Chromatographic methods for product-profile analysis and isolation of oligosaccharides produced by heparinase-catalyzed depolymerization of heparin. J Chromatogr A. 2001;932:65–74.CrossRef
    43.Limtiaco JFK, Beni S, Jones CJ, Langeslay DJ, Larive CK. The efficient structure elucidation of minor components in heparin digests using microcoil NMR. Carbohyd Res. 2011;346:2244–54.CrossRef
    44.Jones CJ, Beni S, Limtiaco JFK, Langeslay DJ, Larive CK. Heparin characterization: challenges and solutions. Annu Rev Anal Chem. 2011;4:439–65.CrossRef
    45.Eldridge SL, Korir AK, Gutierrez SM, Campos F, Limtiaco JFK, Larive CK. Heterogeneity of depolymerized heparin SEC fractions: to pool or not to pool? Carbohyd Res. 2008;343:2963–70.CrossRef
    46.Langeslay DJ, Young RP, Beni S, Beecher CN, Mueller LJ, Larive CK. Sulfamate proton solvent exchange in heparin oligosaccharides: evidence for a persistent hydrogen bond in the antithrombin-binding pentasaccharide Arixtra. Glycobiology. 2012;22:1173–82.CrossRef
    47.Beecher CN, Young RP, Langeslay DJ, Mueller LJ, Larive CK. Hydroxyl-proton hydrogen bonding in the heparin oligosaccharide Arixtra in aqueous solution. J Phys Chem B. 2014;118:482–91.CrossRef
    48.Brustkern AM, Buhse LF, Nasr M, Al-Hakim A, Keire DA. Characterization of currently marketed heparin products: reversed-phase ion-pairing liquid chromatography mass spectrometry of heparin digests. Anal Chem. 2010;82:9865–70.CrossRef
    49.Jones CJ, Membreno N, Larive CK. Insights into the mechanism of separation of heparin and heparan sulfate disaccharides by reverse-phase ion-pair chromatography. J Chromatogr A. 2010;1217:479–88.CrossRef
    50.Wang B, Buhse LF, Al-Hakim A, Ii MTB, Keire DA. Characterization of currently marketed heparin products: analysis of heparin digests by RPIP-UHPLC-QTOF-MS. J Pharmaceut Biomed. 2012;67–68:42–50.CrossRef
    51.Palmer AG, Cavanagh J, Wright PE, Rance M. Sensitivity improvement in proton-detected 2-dimensional heteronuclear correlation NMR spectroscopy. J Magn Reson. 1991;93:151–70.
    52.Kay LE, Keifer P, Saarinen T. Pure absorption gradient enhanced heteronuclear single quantum correlation specotrscopy with improved sensitivity. J Am Chem Soc. 1992;114:10663–5.CrossRef
    53.Schleucher J, Schwendinger M, Sattler M, Schmidt P, Schedletzky O, Glaser SJ, et al. A general enhancement scheme in heteronuclear multidimensional NMR employing pulsed-field gradients. J Biomol NMR. 1994;4:301–6.
    54.Langeslay DJ, Beni S, Larive CK. Detection of the 1H and 15N NMR resonances of sulfamate groups in aqueous solution: a new tool for heparin and heparan sulfate characterization. Anal Chem. 2011;83:8006–10.CrossRef
    55.Pervin A, Gallo C, Jandik KA, Han XJ, Linhardt RJ. Preparation and structural characterization of large heparin-derived oligosaccharides. Glycobiology. 1995;5:83–95.CrossRef
    56.Chuang W-L, Christ MD, Rabenstein DL. Determination of the primary structures of heparin- and heparan sulfate-derived oligosaccharides using band-selective homonuclear-decoupled two-dimensional 1H NMR experiments. Anal Chem. 2001;73:2310–6.CrossRef
    57.Langeslay DJ, Beecher CN, Dinges MM, Larive CK. Glycosaminoglycan structural characterization. eMagRes. 2013;2:205–14.
    58.Ozug J, Wudyka S, Gunay NS, Beccati D, Lansing J, Wang J, et al. Structural elucidation of the tetrasaccharide pool in enoxaparin sodium. Anal Bioanal Chem. 2012;403:2733–44.CrossRef
    59.Chuang WL, McAllister H, Rabenstein DL. Hexasaccharides from the histamine-modified depolymerization of porcine intestinal mucosal heparin. Carbohyd Res. 2002;337:935–45.CrossRef
  • 作者单位:Consuelo N. Beecher (1)
    Matthew S. Manighalam (1)
    Adanma F. Nwachuku (1)
    Cynthia K. Larive (1)

    1. Department of Chemistry, University of California, Riverside, 501 Big Springs Rd, Riverside, California, 92521, USA
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Analytical Chemistry
    Food Science
    Inorganic Chemistry
    Physical Chemistry
    Monitoring, Environmental Analysis and Environmental Ecotoxicology
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1618-2650
文摘
Heparin and heparan sulfate (HS) are important in mediating a variety of biological processes through binding to myriad different proteins. Specific structural elements along the polysaccharide chains are essential for high affinity protein binding, such as the 3-O-sulfated N-sulfoglucosamine (GlcNS3S) residue, a relatively rare modification essential for heparin’s anticoagulant activity. The isolation of 3-O-sulfated oligosaccharides from complex mixtures is challenging because of their low abundance. Although methods such as affinity chromatography are useful in isolating oligosaccharides that bind specific proteins with high affinity, other important 3-O-sulfated oligosaccharides may easily be overlooked. Screening preparative-scale size-exclusion chromatography (SEC) fractions of heparin or HS digests using [1H,15N] HSQC NMR allows the identification of fractions containing 3-O-sulfated oligosaccharides through the unique 1H and 15N chemical shifts of the GlcNS3S residue. Those SEC fractions containing 3-O-sulfated oligosaccharides can then be isolated using strong anion-exchange (SAX)–HPLC. Compared with the results obtained by pooling the fractions comprising a given SEC peak, SAX–HPLC analysis of individual SEC fractions produces a less complicated chromatogram in which the 3-O-sulfated oligosaccharides are enriched relative to more abundant components. The utility of this approach is demonstrated for tetrasaccharide SEC fractions of the low molecular weight heparin drug enoxaparin facilitating the isolation and characterization of an unsaturated 3-O-sulfated tetrasaccharide containing a portion of the antithrombin-III binding sequence.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700