Enabling practical electrocatalyst-assisted photoelectron-chemical water splitting with earth abundant materials
详细信息    查看全文
  • 作者:Xiaogang Yang (1)
    Rui Liu (2) (3)
    Yumin He (3)
    James Thorne (3)
    Zhi Zheng (1)
    Dunwei Wang (3)

    1. Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province and Institute of Surface Micro and Nano Materials
    ; Xuchang University ; Henan ; 461000 ; China
    2. Division of Chemistry and Chemical Engineering
    ; Joint Center for Artificial Photosynthesis ; California Institute of Technology ; Pasadena ; CA ; 91125 ; USA
    3. Department of Chemistry
    ; Boston College ; Merkert Chemistry Center ; 2609 Beacon St. ; Chestnut Hill ; MA ; 02467 ; USA
  • 关键词:photoelectrochemical water splitting ; efficiency ; stability ; interface ; earth abundance
  • 刊名:Nano Research
  • 出版年:2015
  • 出版时间:January 2015
  • 年:2015
  • 卷:8
  • 期:1
  • 页码:56-81
  • 全文大小:3,827 KB
  • 参考文献:1. / BP Statistical Review of World Energy. BP Plc, 2014.
    2. Nocera, D. G. The artificial leaf. / Acc. Chem. Res. 2012, / 45, 767鈥?76. CrossRef
    3. Liu, C.; Dasgupta, N. P.; Yang, P. D. Semiconductor nanowires for artificial photosynthesis. / Chem. Mater. 2013, / 26, 415鈥?22. CrossRef
    4. Raven, P. H.; Evert, R. F.; Eichhorn, S. E. / Biology of Plants; W. H. Freeman: New York, 2005.
    5. Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q. X.; Santori, E. A.; Lewis, N. S. Solar water splitting cells. / Chem. Rev. 2010, / 110, 6446鈥?473. CrossRef
    6. Boddy, P. J. Oxygen evolution on semiconducting TiO2. / J. Electrochem. Soc. 1968, / 115, 199鈥?03. CrossRef
    7. Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. / Nature 1972, / 238, 37鈥?8. CrossRef
    8. Aharon-Shalom, E.; Heller, A. Efficient p-lnP(Rh-H alloy) and p-lnP(Re-H alloy) hydrogen evolving photocathodes. / J. Electrochem. Soc. 1982, / 129, 2865鈥?866. CrossRef
    9. Licht, S.; Wang, B.; Mukerji, S.; Soga, T.; Umeno, M.; Tributsch, H. Efficient solar water splitting, exemplified by RuO2-catalyzed AlGaAs/Si photoelectrolysis. / J. Phys. Chem. B 2000, / 104, 8920鈥?924. CrossRef
    10. Kenney, M. J.; Gong, M.; Li, Y. G.; Wu, J. Z.; Feng, J.; Lanza, M.; Dai, H. J. High-performance silicon photoanodes passivated with ultrathin nickel films for water oxidation. / Science 2013, / 342, 836鈥?40. CrossRef
    11. Hu, S.; Shaner, M. R.; Beardslee, J. A.; Lichterman, M.; Brunschwig, B. S.; Lewis, N. S. Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation. / Science 2014, / 344, 1005鈥?009. CrossRef
    12. van de Krol, R. Principles of photoelectrochemical cells. In / Photoelectrochemical Hydrogen Production. van de Krol, R.; Gr盲tzel, M., Eds.; Springer US: New York, 2012; pp 13鈥?7. CrossRef
    13. Andrade, L.; Lopes, T.; Ribeiro, H. A.; Mendes, A. Transient phenomenological modeling of photoelectrochemical cells for water splitting鈥擜pplication to undoped hematite electrodes. / Int. J. Hydrogen Energy 2011, / 36, 175鈥?88. CrossRef
    14. Hu, S.; Xiang, C. X.; Haussener, S.; Berger, A. D.; Lewis, N. S. An analysis of the optimal band gaps of light absorbers in integrated tandem photoelectrochemical water-splitting systems. / Energy Environ. Sci. 2013, / 6, 2984鈥?993. CrossRef
    15. Haussener, S.; Xiang, C. X.; Spurgeon, J. M.; Ardo, S.; Lewis, N. S.; Weber, A. Z. Modeling, simulation, and design criteria for photoelectrochemical water-splitting systems. / Energy Environ. Sci. 2012, / 5, 9922鈥?935. CrossRef
    16. Woodhouse, M.; Parkinson, B. A. Combinatorial approaches for the identification and optimization of oxide semiconductors for efficient solar photoelectrolysis. / Chem. Soc. Rev. 2009, / 38, 197鈥?10. CrossRef
    17. Lide, D. R. / CRC Handbook of Chemistry and Physics; CRC Press: London, 2003.
    18. Sathre, R.; Scown, C. D.; Morrow, W. R.; Stevens, J. C.; Sharp, I. D.; Ager, J. W.; Walczak, K.; Houle, F. A.; Greenblatt, J. B. Life-cycle net energy assessment of large-scale hydrogen production via photoelectrochemical water splitting. / Energy Environ. Sci. 2014, / 7, 3264鈥?278. CrossRef
    19. Pinaud, B. A.; Benck, J. D.; Seitz, L. C.; Forman, A. J.; Chen, Z. B.; Deutsch, T. G.; James, B. D.; Baum, K. N.; Baum, G. N.; Ardo, S. et al. Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry. / Energy Environ. Sci. 2013, / 6, 1983鈥?002. CrossRef
    20. Bolton, J. R.; Strickler, S. J.; Connolly, J. S. Limiting and realizable efficiencies of solar photolysis of water. / Nature 1985, / 316, 495鈥?00. CrossRef
    21. Seitz, L. C.; Chen, Z. B.; Forman, A. J.; Pinaud, B. A.; Benck, J. D.; Jaramillo, T. F. Modeling practical performance limits of photoelectrochemical water splitting based on the current state of materials research. / ChemSusChem 2014, / 7, 1372鈥?385. CrossRef
    22. Cho, I. S.; Chen, Z. B.; Forman, A. J.; Kim, D. R.; Rao, P. M.; Jaramillo, T. F.; Zheng, X. L. Branched TiO2 nanorods for photoelectrochemical hydrogen production. / Nano Lett. 2011, / 11, 4978鈥?984. CrossRef
    23. Varghese, O. K.; Grimes, C. A. Appropriate strategies for determining the photoconversion efficiency of water photoelectrolysis cells: A review with examples using titania nanotube array photoanodes. / Sol. Energy Mater. Sol. Cells 2008, / 92, 374鈥?84. CrossRef
    24. Seabold, J. A.; Choi, K.-S. Efficient and stable photo-oxidation of water by a bismuth vanadate photoanode coupled with an iron oxyhydroxide oxygen evolution catalyst. / J. Am. Chem. Soc. 2012, / 134, 2186鈥?192. CrossRef
    25. Zhong, D. K.; Gamelin, D. R. Photoelectrochemical water oxidation by cobalt catalyst (鈥淐o-Pi鈥?/伪-Fe2O3 composite photoanodes: Oxygen evolution and resolution of a kinetic bottleneck. / J. Am. Chem. Soc. 2010, / 132, 4202鈥?207. CrossRef
    26. Zhong, D. K.; Choi, S.; Gamelin, D. R. Near-complete suppression of surface recombination in solar photoelectrolysis by 鈥淐o-Pi鈥?catalyst-modified W:BiVO4. / J. Am. Chem. Soc. 2011, / 133, 18370鈥?8377. CrossRef
    27. Barroso, M.; Cowan, A. J.; Pendlebury, S. R.; Gr盲tzel, M.; Klug, D. R.; Durrant, J. R. The role of cobalt phosphate in enhancing the photocatalytic activity of 伪-Fe2O3 toward water oxidation. / J. Am. Chem. Soc. 2011, / 133, 14868鈥?4871. CrossRef
    28. Gamelin, D. R. Water splitting: Catalyst or spectator? / Nat. Chem. 2012, / 4, 965鈥?67. CrossRef
    29. Le Formal, F.; T茅treault, N.; Cornuz, M.; Moehl, T.; Gr盲tzel, M.; Sivula, K. Passivating surface states on water splitting hematite photoanodes with alumina overlayers. / Chem. Sci. 2011, / 2, 737鈥?43. CrossRef
    30. Hisatomi, T.; Le Formal, F.; Cornuz, M.; Brillet, J.; T茅treault, N.; Sivula, K.; Gr盲tzel, M. Cathodic shift in onset potential of solar oxygen evolution on hematite by 13-group oxide overlayers. / Energy Environ. Sci. 2011, / 4, 2512鈥?515. CrossRef
    31. Yang, X. G.; Liu, R.; Du, C.; Dai, P. C.; Zheng, Z.; Wang, D. W. Improving hematite-based photoelectrochemical water splitting with ultrathin TiO2 by atomic layer deposition. / ACS Appl. Mater. Interfaces 2014, / 6, 12005鈥?2011. CrossRef
    32. Liao, M. J.; Feng, J. Y.; Luo, W. J.; Wang, Z. Q.; Zhang, J. Y.; Li, Z. S.; Yu, T.; Zou, Z. G. Co3O4 nanoparticles as robust water oxidation catalysts towards remarkably enhanced photostability of a Ta3N5 photoanode. / Adv. Funct. Mater. 2012, / 22, 3066鈥?074. CrossRef
    33. Lin, F. D.; Boettcher, S. W. Adaptive semiconductor/electrocatalyst junctions in water-splitting photoanodes. / Nat. Mater. 2014, / 13, 81鈥?6. CrossRef
    34. Mills, T. J.; Lin, F. D.; Boettcher, S. W. Theory and simulations of electrocatalyst-coated semiconductor electrodes for solar water splitting. / Phys. Rev. Lett. 2014, / 112, 148304. CrossRef
    35. Reece, S. Y.; Hamel, J. A.; Sung, K.; Jarvi, T. D.; Esswein, A. J.; Pijpers, J. J. H.; Nocera, D. G. Wireless solar water splitting using silicon-based semiconductors and earth abundant catalysts. / Science 2011, / 334, 645鈥?48. CrossRef
    36. Vesborg, P. C. K.; Jaramillo, T. F. Addressing the terawatt challenge: Scalability in the supply of chemical elements for renewable energy. / RSC Adv. 2012, / 2, 7933鈥?947. CrossRef
    37. Li, Z. S.; Luo, W. J.; Zhang, M. L.; Feng, J. Y.; Zou, Z. G. Photoelectrochemical cells for solar hydrogen production: Current state of promising photoelectrodes, methods to improve their properties, and outlook. / Energy Environ. Sci. 2013, / 6, 347鈥?70. CrossRef
    38. Faber, M. S.; Jin, S. Earth abundant inorganic electrocatalysts and their nanostructures for energy conversion applications. / Energy Environ. Sci. 2014, / 7, 3519鈥?542. CrossRef
    39. Osterloh, F. E. Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting. / Chem. Soc. Rev. 2013, / 42, 2294鈥?320. CrossRef
    40. Liu, R.; Zheng, Z.; Spurgeon, J.; Yang, X. G. Enhanced photoelectrochemical water-splitting performance of semiconductors by surface passivation layers. / Energy Environ. Sci. 2014, / 7, 2504鈥?517. CrossRef
    41. Sun, K.; Shen, S. H.; Liang, Y. Q.; Burrows, P. E.; Mao, S. S.; Wang, D. L. Enabling silicon for solar-fuel production. / Chem. Rev. 2014, / 114, 8662鈥?719. CrossRef
    42. Hoang, S.; Berglund, S. P.; Hahn, N. T.; Bard, A. J.; Mullins, C. B. Enhancing visible light photo-oxidation of water with TiO2 nanowire arrays via cotreatment with H2 and NH3: Synergistic effects between Ti3+ and N. / J. Am. Chem. Soc. 2012, / 134, 3659鈥?662. CrossRef
    43. Liu, B.; Chen, H. M.; Liu, C.; Andrews, S. C.; Hahn, C.; Yang, P. D. Large-scale synthesis of transition-metal-doped TiO2 nanowires with controllable overpotential. / J. Am. Chem. Soc. 2013, / 135, 9995鈥?998. CrossRef
    44. Sivula, K.; Le Formal, F.; Gr盲tzel, M. Solar water splitting: Progress using hematite (伪-Fe2O3) photoelectrodes. / ChemSusChem 2011, / 4, 432鈥?49. CrossRef
    45. Bignozzi, C. A.; Caramori, S.; Cristino, V.; Argazzi, R.; Meda, L.; Tacca, A. Nanostructured photoelectrodes based on WO3: Applications to photooxidation of aqueous electrolytes. / Chem. Soc. Rev. 2013, / 42, 2228鈥?246. CrossRef
    46. Park, Y.; McDonald, K. J.; Choi, K.-S. Progress in bismuth vanadate photoanodes for use in solar water oxidation. / Chem. Soc. Rev. 2013, / 42, 2321鈥?337. CrossRef
    47. Brillet, J.; Gr盲tzel, M.; Sivula, K. Decoupling feature size and functionality in solution-processed, porous hematite electrodes for solar water splitting. / Nano Lett. 2010, / 10, 4155鈥?160. CrossRef
    48. Kay, A.; Cesar, I.; Gr盲tzel, M. New benchmark for water photooxidation by nanostructured 伪-Fe2O3 films. / J. Am. Chem. Soc. 2006, / 128, 15714鈥?5721. CrossRef
    49. Le Formal, F.; Gr盲tzel, M.; Sivula, K. Controlling photoactivity in ultrathin hematite films for solar water-splitting. / Adv. Funct. Mater. 2010, / 20, 1099鈥?107. CrossRef
    50. Sivula, K.; Zboril, R.; Le Formal, F.; Robert, R.; Weidenkaff, A.; Tucek, J.; Frydrych, J.; Gr盲tzel, M. Photoelectrochemical water splitting with mesoporous hematite prepared by a solution-based colloidal approach. / J. Am. Chem. Soc. 2010, / 132, 7436鈥?444. CrossRef
    51. Tilley, S. D.; Cornuz, M.; Sivula, K.; Gr盲tzel, M. Light-induced water splitting with hematite: Improved nanostructure and iridium oxide catalysis. / Angew. Chem. Int. Ed. 2010, / 49, 6405鈥?408. CrossRef
    52. Liu, R.; Lin, Y. J.; Chou, L.-Y.; Sheehan, S. W.; He, W. S.; Zhang, F.; Hou, H. J. M.; Wang, D. W. Water splitting by tungsten oxide prepared by atomic layer deposition and decorated with an oxygen-evolving catalyst. / Angew. Chem. Int. Ed. 2011, / 50, 499鈥?02. CrossRef
    53. Ming, T.; Suntivich, J.; May, K. J.; Stoerzinger, K. A.; Kim, D. H.; Shao-Horn, Y. Visible light photo-oxidation in Au nanoparticle sensitized SrTiO3:Nb photoanode. / J. Phys. Chem. C 2013, / 117, 15532鈥?5539. CrossRef
    54. Hassan, N. K.; Hashim, M. R.; Allam, N. K. ZnO nanotetrapod photoanodes for enhanced solar-driven water splitting. / Chem. Phys. Lett. 2012, / 549, 62鈥?6. CrossRef
    55. Zhen, C.; Wang, L. Z.; Liu, G.; Lu, G. Q.; Cheng, H.-M. Template-free synthesis of Ta3N5 nanorod arrays for efficient photoelectrochemical water splitting. / Chem. Commun. 2013, / 49, 3019鈥?021. CrossRef
    56. Ling, Y. C.; Wang, G. M.; Wheeler, D. A.; Zhang, J. Z.; Li, Y. Sn-doped hematite nanostructures for photoelectrochemical water splitting. / Nano Lett. 2011, / 11, 2119鈥?125. CrossRef
    57. Ye, H.; Park, H. S.; Bard, A. J. Screening of electrocatalysts for photoelectrochemical water oxidation on W-doped BiVO4 photocatalysts by scanning electrochemical microscopy. / J. Phys. Chem. C 2011, / 115, 12464鈥?2470. CrossRef
    58. Park, H. S.; Lee, H. C.; Leonard, K. C.; Liu, G. J.; Bard, A. J. Unbiased photoelectrochemical water splitting in Z-scheme device using W/Mo-doped BiVO4 and ZnxCd1鈭?em class="a-plus-plus">x Se. / ChemPhysChem 2013, / 14, 2277鈥?287. CrossRef
    59. Holland, K.; Dutter, M. R.; Lawrence, D. J.; Reisner, B. A.; DeVore, T. C. Photoelectrochemical performance of W-doped BiVO4 thin films deposited by spray pyrolysis. / J. Photonics Energy 2014, / 4, 041598. CrossRef
    60. Zhou, M.; Bao, J.; Xu, Y.; Zhang, J. J.; Xie, J. F.; Guan, M. L.; Wang, C. L.; Wen, L. Y.; Lei, Y.; Xie, Y. Photoelectrodes based upon Mo:BiVO4 inverse opals for photoelectrochemical water splitting. / ACS Nano 2014, / 8, 7088鈥?098. CrossRef
    61. Song, X. C.; Yang, E.; Liu, G.; Zhang, Y.; Liu, Z. S.; Chen, H. F.; Wang, Y. Preparation and photocatalytic activity of Mo-doped WO3 nanowires. / J. Nanopart. Res. 2010, / 12, 2813鈥?819. CrossRef
    62. Cai, G.-F.; Wang, X.-L.; Zhou, D.; Zhang, J.-H.; Xiong, Q.-Q.; Gu, C.-D.; Tu, J.-P. Hierarchical structure Ti-doped WO3 film with improved electrochromism in visible-infrared region. / RSC Adv. 2013, / 3, 6896鈥?905. CrossRef
    63. Upadhyay, S. B.; Mishra, R. K.; Sahay, P. P. Structural and alcohol response characteristics of Sn-doped WO3 nanosheets. / Sens. Actuators B 2014, / 193, 19鈥?7. CrossRef
    64. Guo, C. X.; Dong, Y. Q.; Yang, H. B.; Li, C. M. Graphene quantum dots as a green sensitizer to functionalize ZnO nanowire arrays on F-doped SnO2 glass for enhanced photoelectrochemical water splitting. / Adv. Energy Mater. 2013, / 3, 997鈥?003. CrossRef
    65. Lin, Y.-G.; Hsu, Y.-K.; Chen, Y.-C.; Chen, L.-C.; Chen, S.-Y.; Chen, K.-H. Visible-light-driven photocatalytic carbon-doped porous ZnO nanoarchitectures for solar water-splitting. / Nanoscale 2012, / 4, 6515鈥?519. CrossRef
    66. Mayer, M. A.; Yu, K. M.; Speaks, D. T.; Denlinger, J. D.; Reichertz, L. A.; Beeman, J. W.; Haller, E. E.; Walukiewicz, W. Band gap engineering of oxide photoelectrodes: Characterization of ZnO1鈭?em class="a-plus-plus">x Sex. / J. Phys. Chem. C 2012, / 116, 15281鈥?5289. CrossRef
    67. Yang, X. Y.; Wolcott, A.; Wang, G. M.; Sobo, A.; Fitzmorris, R. C.; Qian, F.; Zhang, J. Z.; Li, Y. Nitrogen-doped ZnO nanowire arrays for photoelectrochemical water splitting. / Nano Lett. 2009, / 9, 2331鈥?336. CrossRef
    68. Cesar, I.; Kay, A.; Martinez, J. A. G.; Gr盲tzel, M. Translucent thin film Fe2O3 photoanodes for efficient water splitting by sunlight: Nanostructure-directing effect of Si-doping. / J. Am. Chem. Soc. 2006, / 128, 4582鈥?583. CrossRef
    69. Hu, Y.-S.; Kleiman-Shwarsctein, A.; Forman, A. J.; Hazen, D.; Park, J.-N.; McFarland, E. W. Pt-doped 伪-Fe2O3 thin films active for photoelectrochemical water splitting. / Chem. Mater. 2008, / 20, 3803鈥?805. CrossRef
    70. Ingler, W. B.; Khan, S. U. M. Photoresponse of spray pyrolytically synthesized copper-doped p-Fe2O3 thin film electrodes in water splitting. / Int. J. Hydrogen Energy 2005, / 30, 821鈥?27. CrossRef
    71. Kleiman-Shwarsctein, A.; Hu, Y.-S.; Forman, A. J.; Stucky, G. D.; McFarland, E. W. Electrodeposition of 伪-Fe2O3 doped with Mo or Cr as photoanodes for photocatalytic water splitting. / J. Phys. Chem. C 2008, / 112, 15900鈥?5907. CrossRef
    72. Kumar, P.; Sharma, P.; Shrivastav, R.; Dass, S.; Satsangi, V. R. Electrodeposited zirconium-doped 伪-Fe2O3 thin film for photoelectrochemical water splitting. / Int. J. Hydrogen Energy 2011, / 36, 2777鈥?784. CrossRef
    73. Cho, I. S.; Lee, C. H.; Feng, Y. Z.; Logar, M.; Rao, P. M.; Cai, L. L.; Kim, D. R.; Sinclair, R.; Zheng, X. L. Codoping titanium dioxide nanowires with tungsten and carbon for enhanced photoelectrochemical performance. / Nat. Commun. 2013, / 4, 1723. CrossRef
    74. Zhou, J. K.; Zhang, Y. X.; Zhao, X. S.; Ray, A. K. Photodegradation of benzoic acid over metal-doped TiO2. / Ind. Eng. Chem. Res. 2006, / 45, 3503鈥?511. CrossRef
    75. Mayer, M. T.; Du, C.; Wang, D. W. Hematite/Si nanowire dual-absorber system for photoelectrochemical water splitting at low applied potentials. / J. Am. Chem. Soc. 2012, / 134, 12406鈥?2409. CrossRef
    76. Shaner, M. R.; Fountaine, K. T.; Ardo, S.; Coridan, R. H.; Atwater, H. A.; Lewis, N. S. Photoelectrochemistry of core-shell tandem junction n-p+-Si/n-WO3 microwire array photoelectrodes. / Energy Environ. Sci. 2014, / 7, 779鈥?90. CrossRef
    77. Coridan, R. H.; Arpin, K. A.; Brunschwig, B. S.; Braun, P. V.; Lewis, N. S. Photoelectrochemical behavior of hierarchically structured Si/WO3 core-shell tandem photoanodes. / Nano Lett. 2014, / 14, 2310鈥?317. CrossRef
    78. Liu, C.; Tang, J. Y.; Chen, H. M.; Liu, B.; Yang, P. D. A fully integrated nanosystem of semiconductor nanowires for direct solar water splitting. / Nano Lett. 2013, / 13, 2989鈥?992. CrossRef
    79. Abdi, F. F.; Han, L. H.; Smets, A. H. M.; Zeman, M.; Dam, B.; van de Krol, R. Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode. / Nat. Commun. 2013, / 4, 2195. CrossRef
    80. Leroy, C. M.; Maegli, A. E.; Sivula, K.; Hisatomi, T.; Xanthopoulos, N.; Otal, E. H.; Yoon, S.; Weidenkaff, A.; Sanjines, R.; Gr盲tzel, M. LaTiO2N/In2O3 photoanodes with improved performance for solar water splitting. / Chem. Commun. 2012, / 48, 820鈥?22. CrossRef
    81. Patil, R.; Kelkar, S.; Naphadeab, R.; Ogale, S. Low temperature grown CuBi2O4 with flower morphology and its composite with CuO nanosheets for photoelectrochemical water splitting. / J. Mater. Chem. A 2014, / 2, 3661鈥?668. CrossRef
    82. AlOtaibi, B.; Nguyen, H. P.; Zhao, S.; Kibria, M. G.; Fan, S.; Mi, Z. Highly stable photoelectrochemical water splitting and hydrogen generation using a double-band InGaN/GaN core/shell nanowire photoanode. / Nano Lett. 2013, / 13, 4356鈥?361. CrossRef
    83. Yokoyama, D.; Minegishi, T.; Jimbo, K.; Hisatomi, T.; Ma, G. J.; Katayama, M.; Kubota, J.; Katagiri, H.; Domen, K. H2 evolution from water on modified Cu2ZnSnS4 photoelectrode under solar light. / Appl. Phys. Express 2010, / 3, 101202. CrossRef
    84. Sun, Y. F.; Sun, Z. H.; Gao, S.; Cheng, H.; Liu, Q. H.; Lei, F. C.; Wei, S. Q.; Xie, Y. All-surface-atomic-metal chalcogenide sheets for high-efficiency visible-light photoelectrochemical water splitting. / Adv. Energy Mater. 2014, / 4, 1300611.
    85. Liu, J.; Li, X.-B.; Wang, D.; Liu, H.; Peng, P.; Liu, L.-M. Single-layer group-IVB nitride halides as promising photocatalysts. / J. Mater. Chem. A 2014, / 2, 6755鈥?761. CrossRef
    86. Li, W. Q.; Walther, C. F. J.; Kuc, A.; Heine, T. Density functional theory and beyond for band-gap screening: Performance for transition-metal oxides and dichalcogenides. / J. Chem. Theory Comput. 2013, / 9, 2950鈥?958. CrossRef
    87. Yourey, J. E.; Bartlett, B. M. Electrochemical deposition and photoelectrochemistry of CuWO4, a promising photoanode for water oxidation. / J. Mater. Chem. 2011, / 21, 7651鈥?660. CrossRef
    88. Kato, M.; Yasuda, T.; Miyake, K.; Ichimura, M.; Hatayama, T. Epitaxial p-type SiC as a self-driven photocathode for water splitting. / Int. J. Hydrogen Energy 2014, / 39, 4845鈥?849. CrossRef
    89. Biswas, S. K.; Baeg, J.-O. Enhanced photoactivity of visible light responsive W incorporated FeVO4 photoanode for solar water splitting. / Int. J. Hydrogen Energy 2013, / 38, 14451鈥?4457. CrossRef
    90. Zhang, X.; Ai, Z. H.; Jia, F. L.; Zhang, L. Z. Generalized one-pot synthesis, characterization, and photocatalytic activity of hierarchical BiOX (X = Cl, Br, I) nanoplate microspheres. / J. Phys. Chem. C 2008, / 112, 747鈥?53. CrossRef
    91. Hahn, N. T.; Hoang, S.; Self, J. L.; Mullins, C. B. Spray pyrolysis deposition and photoelectrochemical properties of n-type BiOI nanoplatelet thin films. / ACS Nano 2012, / 6, 7712鈥?722. CrossRef
    92. Wang, X. C.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen, K.; Antonietti, M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. / Nat. Mater. 2009, / 8, 76鈥?0. CrossRef
    93. Chen, S. Y.; Wang, L.-W. Thermodynamic oxidation and reduction potentials of photocatalytic semiconductors in aqueous solution. / Chem. Mater. 2012, / 24, 3659鈥?666. CrossRef
    94. Chen, Y. W.; Prange, J. D.; D眉hnen, S.; Park, Y.; Gunji, M.; Chidsey, C. E. D.; McIntyre, P. C. Atomic layer-deposited tunnel oxide stabilizes silicon photoanodes for water oxidation. / Nat. Mater. 2011, / 10, 539鈥?44. CrossRef
    95. Seger, B.; Pedersen, T.; Laursen, A. B.; Vesborg, P. C. K.; Hansen, O.; Chorkendorff, I. Using TiO2 as a conductive protective layer for photocathodic H2 evolution. / J. Am. Chem. Soc. 2013, / 135, 1057鈥?064. CrossRef
    96. Kibsgaard, J.; Chen, Z. B.; Reinecke, B. N.; Jaramillo, T. F. Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. / Nat. Mater. 2012, / 11, 963鈥?69. CrossRef
    97. Lukowski, M. A.; Daniel, A. S.; Meng, F.; Forticaux, A.; Li, L. S.; Jin, S. Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. / J. Am. Chem. Soc. 2013, / 135, 10274鈥?0277. CrossRef
    98. Merki, D.; Vrubel, H.; Rovelli, L.; Fierro, S.; Hu, X. L. Fe, Co, and Ni ions promote the catalytic activity of amorphous molybdenum sulfide films for hydrogen evolution. / Chem. Sci. 2012, / 3, 2515鈥?525. CrossRef
    99. Popczun, E. J.; McKone, J. R.; Read, C. G.; Biacchi, A. J.; Wiltrout, A. M.; Lewis, N. S.; Schaak, R. E. Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. / J. Am. Chem. Soc. 2013, / 135, 9267鈥?270. CrossRef
    100. McKone, J. R.; Sadtler, B. F.; Werlang, C. A.; Lewis, N. S.; Gray, H. B. Ni-Mo nanopowders for efficient electrochemical hydrogen evolution. / ACS Catal. 2013, / 3, 166鈥?69. CrossRef
    101. Parsons, R. The rate of electrolytic hydrogen evolution and the heat of adsorption of hydrogen. / Trans. Faraday Soc. 1958, / 54, 1053鈥?063. CrossRef
    102. Boettcher, S. W.; Warren, E. L.; Putnam, M. C.; Santori, E. A.; Turner-Evans, D.; Kelzenberg, M. D.; Walter, M. G.; McKone, J. R.; Brunschwig, B. S.; Atwater, H. A. et al. Photoelectrochemical hydrogen evolution using Si microwire arrays. / J. Am. Chem. Soc. 2011, / 133, 1216鈥?219. CrossRef
    103. Dasgupta, N. P.; Liu, C.; Andrews, S.; Prinz, F. B.; Yang, P. D. Atomic layer deposition of platinum catalysts on nanowire surfaces for photoelectrochemical water reduction. / J. Am. Chem. Soc. 2013, / 135, 12932鈥?2935. CrossRef
    104. Dai, P. C.; Xie, J.; Mayer, M. T.; Yang, X. G.; Zhan, J. H.; Wang, D. W. Solar hydrogen generation by silicon nanowires modified with platinum nanoparticle catalysts by atomic layer deposition. / Angew. Chem. Int. Ed. 2013, / 52, 11119鈥?1123. CrossRef
    105. Kye, J.; Shin, M.; Lim, B.; Jang, J. W.; Oh, I.; Hwang, S. Platinum monolayer electrocatalyst on gold nanostructures on silicon for photoelectrochemical hydrogen evolution. / ACS Nano 2013, / 7, 6017鈥?023. CrossRef
    106. Paracchino, A.; Laporte, V.; Sivula, K.; Gr盲tzel, M.; Thimsen, E. Highly active oxide photocathode for photoelectrochemical water reduction. / Nat. Mater. 2011, / 10, 456鈥?61. CrossRef
    107. Dai, P. C.; Li, W.; Xie, J.; He, Y. M.; Thorne, J.; McMahon, G.; Zhan, J. H.; Wang, D. W. Forming buried junctions to enhance photovoltage by cuprous oxide in aqueous solutions. / Angew. Chem. Int. Ed. 2014, / 53, 13493鈥?3497. CrossRef
    108. Kim, J.; Minegishi, T.; Kobota, J.; Domen, K. Investigation of Cu-deficient copper gallium selenide thin film as a photocathode for photoelectrochemical water splitting. / Jpn. J. Appl. Phys. 2012, / 51, 015802. CrossRef
    109. Gunawan; Septina, W.; Ikeda, S.; Harada, T.; Minegishi, T.; Domen, K.; Matsumura, M. Platinum and indium sulfide-modified CuInS2 as efficient photocathodes for photoelectrochemical water splitting. / Chem. Commun. 2014, / 50, 8941鈥?943. CrossRef
    110. Baglio, J. A.; Calabrese, G. S.; Harrison, D. J.; Kamieniecki, E.; Ricco, A. J.; Wrighton, M. S.; Zoski, G. D. Electrochemical characterization of p-type semiconducting tungsten disulfide photocathodes: Efficient photoreduction processes at semiconductor/liquid electrolyte interfaces. / J. Am. Chem. Soc. 1983, / 105, 2246鈥?256. CrossRef
    111. Hou, Y. D.; Abrams, B. L.; Vesborg, P. C. K.; Bj枚rketun, M. E.; Herbst, K.; Bech, L.; Setti, A. M.; Damsgaard, C. D.; Pedersen, T.; Hansen, O. et al. Bioinspired molecular co-catalysts bonded to a silicon photocathode for solar hydrogen evolution. / Nat. Mater. 2011, / 10, 434鈥?38. CrossRef
    112. Huang, Z. P.; Chen, Z. B.; Chen, Z. Z.; Lv, C. C.; Meng, H.; Zhang, C. Ni12P5 nanoparticles as an efficient catalyst for hydrogen generation via electrolysis and photoelectrolysis. / ACS Nano 2014, / 8, 8121鈥?129. CrossRef
    113. Warren, E. L.; McKone, J. R.; Atwater, H. A.; Gray, H. B.; Lewis, N. S. Hydrogen-evolution characteristics of Ni-Mo-coated, radial junction, n+p-silicon microwire array photocathodes. / Energy Environ. Sci. 2012, / 5, 9653鈥?661. CrossRef
    114. Lin, Y. J.; Battaglia, C.; Boccard, M.; Hettick, M.; Yu, Z.; Ballif, C.; Ager, J. W.; Javey, A. Amorphous Si thin film based photocathodes with high photovoltage for efficient hydrogen production. / Nano Lett. 2013, / 13, 5615鈥?618. CrossRef
    115. Huang, Z. P.; Wang, C. F.; Chen, Z. B.; Meng, H.; Lv, C. C.; Chen, Z. Z.; Han, R. Q.; Zhang, C. Tungsten sulfide enhancing solar-driven hydrogen production from silicon nanowires. / ACS Appl. Mater. Interfaces 2014, / 6, 10408鈥?0414. CrossRef
    116. Seger, B.; Laursen, A. B.; Vesborg, P. C. K.; Pedersen, T.; Hansen, O.; Dahl, S.; Chorkendorff, I. Hydrogen production using a molybdenum sulfide catalyst on a titanium-protected n+p-silicon photocathode. / Angew. Chem. Int. Ed. 2012, / 51, 9128鈥?131. CrossRef
    117. Lin, C.-Y.; Lai, Y.-H.; Mersch, D.; Reisner, E. Cu2O|NiOx nanocomposite as an inexpensive photocathode in photoelectrochemical water splitting. / Chem. Sci. 2012, / 3, 3482鈥?487. CrossRef
    118. Morales-Guio, C. G.; Tilley, S. D.; Vrubel, H.; Gr盲tzel, M.; Hu, X. L. Hydrogen evolution from a copper(I) oxide photocathode coated with an amorphous molybdenum sulphide catalyst. / Nat. Commun. 2014, / 5, 3059. CrossRef
    119. Tilley, S. D.; Schreier, M.; Azevedo, J.; Stefik, M.; Graetzel, M. Ruthenium oxide hydrogen evolution catalysis on composite cuprous oxide water-splitting photocathodes. / Adv. Funct. Mater. 2014, / 24, 303鈥?11. CrossRef
    120. Benck, J. D.; Lee, S. C.; Fong, K. D.; Kibsgaard, J.; Sinclair, R.; Jaramillo, T. F. Designing active and stable silicon photocathodes for solar hydrogen production using molybdenum sulfide nanomaterials. / Adv. Energy Mater., in press, DOI: 10.1002/aenm.201400739.
    121. Rasiyah, P.; Tseung, A. C. C. The role of the lower metal oxide/higher metal oxide couple in oxygen evolution reactions. / J. Electrochem. Soc. 1984, / 131, 803鈥?08. CrossRef
    122. Esswein, A. J.; Surendranath, Y.; Reece, S. Y.; Nocera, D. G. Highly active cobalt phosphate and borate based oxygen evolving catalysts operating in neutral and natural waters. / Energy Environ. Sci. 2011, / 4, 499鈥?04. CrossRef
    123. Smith, R. D. L.; Pr茅vot, M. S.; Fagan, R. D.; Zhang, Z. P.; Sedach, P. A.; Siu, M. K. J.; Trudel, S.; Berlinguette, C. P. Photochemical route for accessing amorphous metal oxide materials for water oxidation catalysis. / Science 2013, / 340, 60鈥?3. CrossRef
    124. Zou, Z. G.; Ye, J. H.; Sayama, K.; Arakawa, H. Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. / Nature 2001, / 414, 625鈥?27. CrossRef
    125. Sun, K.; Pang, X. L.; Shen, S. H.; Qian, X. Q.; Cheung, J. S.; Wang, D. L. Metal oxide composite enabled nanotextured Si photoanode for efficient solar driven water oxidation. / Nano Lett. 2013, / 13, 2064鈥?072. CrossRef
    126. Hoang, S.; Guo, S. W.; Hahn, N. T.; Bard, A. J.; Mullins, C. B. Visible light driven photoelectrochemical water oxidation on nitrogen-modified TiO2 nanowires. / Nano Lett. 2012, / 12, 26鈥?2. CrossRef
    127. Diab, M.; Mokari, T. Thermal decomposition approach for the formation of 伪-Fe2O3 mesoporous photoanodes and an 伪-Fe2O3/CoO hybrid structure for enhanced water oxidation. / Inorg. Chem. 2014, / 53, 2304鈥?309. CrossRef
    128. Lichterman, M. F.; Shaner, M. R.; Handler, S. G.; Brunschwig, B. S.; Gray, H. B.; Lewis, N. S.; Spurgeon, J. M. Enhanced stability and activity for water oxidation in alkaline media with bismuth vanadate photoelectrodes modified with a cobalt oxide catalytic layer produced by atomic layer deposition. / J. Phys. Chem. Lett. 2013, / 4, 4188鈥?191. CrossRef
    129. Liu, G. J.; Shi, J. Y.; Zhang, F. X.; Chen, Z.; Han, J. F.; Ding, C. M.; Chen, S. S.; Wang, Z. L.; Han, H. X.; Li, C. A tantalum nitride photoanode modified with a hole-storage layer for highly stable solar water splitting. / Angew. Chem. Int. Ed. 2014, / 53, 7295鈥?299. CrossRef
    130. Kim, J. Y.; Magesh, G.; Youn, D. H.; Jang, J. W.; Kubota, J.; Domen, K.; Lee, J. S. Single-crystalline, wormlike hematite photoanodes for efficient solar water splitting. / Sci. Rep. 2013, / 3, 2681.
    131. Qiu, Y. C.; Leung, S.-F.; Zhang, Q. P.; Hua, B.; Lin, Q. F.; Wei, Z. H.; Tsui, K.-H.; Zhang, Y. G.; Yang, S. H.; Fan, Z. Y. Efficient photoelectrochemical water splitting with ultrathin films of hematite on three-dimensional nanophotonic structures. / Nano Lett. 2014, / 14, 2123鈥?129. CrossRef
    132. Li, Y. B.; Zhang, L.; Torres-Pardo, A.; Gonz谩lez-Calbet, J. M.; Ma, Y. H.; Oleynikov, P.; Terasaki, O.; Asahina, S.; Shima, M.; Cha, D. et al. Cobalt phosphate-modified barium-doped tantalum nitride nanorod photoanode with 1.5% solar energy conversion efficiency. / Nat. Commun. 2013, / 4, 2566.
    133. Abdi, F. F.; Firet, N.; van de Krol, R. Efficient BiVO4 thin film photoanodes modified with cobalt phosphate catalyst and W-doping. / ChemCatChem 2013, / 5, 490鈥?96. CrossRef
    134. Kim, T. W.; Choi, K.-S. Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. / Science 2014, / 343, 990鈥?94. CrossRef
    135. Strandwitz, N. C.; Comstock, D. J.; Grimm, R. L.; Nichols-Nielander, A. C.; Elam, J.; Lewis, N. S. Photoelectrochemical behavior of n-type Si(100) electrodes coated with thin films of manganese oxide grown by atomic layer deposition. / J. Phys. Chem. C 2013, / 117, 4931鈥?936. CrossRef
    136. Du, C.; Yang, X. G.; Mayer, M. T.; Hoyt, H.; Xie, J.; McMahon, G.; Bischoping, G.; Wang, D. W. Hematite-based water splitting with low turn-on voltages. / Angew. Chem. Int. Ed. 2013, / 52, 12692鈥?2695. CrossRef
    137. Chemelewski, W. D.; Lee, H.-C.; Lin, J. F.; Bard, A. J.; Mullins, C. B. Amorphous FeOOH oxygen evolution reaction catalyst for photoelectrochemical water splitting. / J. Am. Chem. Soc. 2014, / 136, 2843鈥?850. CrossRef
    138. Klepser, B. M.; Bartlett, B. M. Anchoring a molecular iron catalyst to solar-responsive WO3 improves the rate and selectivity of photoelectrochemical water oxidation. / J. Am. Chem. Soc. 2014, / 136, 1694鈥?697. CrossRef
    139. Cox, C. R.; Winkler, M. T.; Pijpers, J. J. H.; Buonassisi, T.; Nocera, D. G. Interfaces between water splitting catalysts and buried silicon junctions. / Energy Environ. Sci. 2013, / 6, 532鈥?38. CrossRef
    140. Bard, A. J.; Bocarsly, A. B.; Fan, F. R. F.; Walton, E. G.; Wrighton, M. S. The concept of Fermi level pinning at semiconductor-liquid junctions. Consequences for energy-conversion efficiency and selection of useful solution redox couples in solar devices. / J. Am. Chem. Soc. 1980, / 102, 3671鈥?677. CrossRef
    141. Yang, X. G.; Du, C.; Liu, R.; Xie, J.; Wang, D. W. Balancing photovoltage generation and charge-transfer enhancement for catalyst-decorated photoelectrochemical water splitting: A case study of the hematite/MnOx combination. / J. Catal. 2013, / 304, 86鈥?1. CrossRef
    142. Trotochaud, L.; Mills, T. J.; Boettcher, S. W. An optocatalytic model for semiconductor-catalyst water-splitting photoelectrodes based on in situ optical measurements on operational catalysts. / J. Phys. Chem. Lett. 2013, / 4, 931鈥?35. CrossRef
    143. Mei, B.; Permyakova, A. A.; Frydendal, R.; Bae, D.; Pedersen, T.; Malacrida, P.; Hansen, O.; Stephens, I. E. L.; Vesborg, P. C. K.; Seger, B. et al. Iron-treated NiO as a highly transparent p-type protection layer for efficient Si-based photoanodes. / J. Phys. Chem. Lett. 2014, / 5, 3456鈥?461. CrossRef
    144. Luo, J. S.; Im, J.-H.; Mayer, M. T.; Schreier, M.; Nazeeruddin, M. K.; Park, N.-G.; Tilley, S. D.; Fan, H. J.; Gr盲tzel, M. Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth abundant catalysts. / Science 2014, / 345, 1593鈥?596. CrossRef
    145. Cox, C. R.; Lee, J. Z.; Nocera, D. G.; Buonassisi, T. Ten-percent solar-to-fuel conversion with nonprecious materials. / Proc. Natl. Acad. Sci. U. S. A. 2014, / 111, 14057鈥?4061. CrossRef
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chinese Library of Science
    Chemistry
    Nanotechnology
  • 出版者:Tsinghua University Press, co-published with Springer-Verlag GmbH
  • ISSN:1998-0000
文摘
Sustainable development and continued prosperity of humanity hinge on the availability of renewable energy sources on a terawatts scale. In the long run, solar energy is the only source that can meet this daunting demand. Widespread utilization of solar energy faces challenges as a result of its diffusive (hence low energy density) and intermittent nature. How to effectively harvest, concentrate, store and redistribute solar energy constitutes a fundamental challenge that the scientific community needs to address. Photoelectrochemical (PEC) water splitting is a process that can directly convert solar energy into chemical energy and store it in chemical bonds, by producing hydrogen as a clean fuel source. It has received significant research attention lately. Here we provide a concise review of the key issues encountered in carrying out PEC water splitting. Our focus is on the balance of considerations such as stability, earth abundance, and efficiency. Particular attention is paid to the combination of photoelectrodes with electrocatalysts, especially on the interfaces between different components.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700