Side-chain engineering of high-efficiency conjugated polymer photovoltaic materials
详细信息    查看全文
  • 作者:Zhi-Guo Zhang (1)
    Yongfang Li (1) (2)

    1. Beijing National Laboratory for Molecular Sciences
    ; CAS Key Laboratory of Organic Solids ; Institute of Chemistry ; Chinese Academy of Sciences ; Beijing ; 100190 ; China
    2. Laboratory of Advanced Optoelectronic Materials
    ; College of Chemistry ; Chemical Engineering and Materials Science ; Soochow University ; Suzhou ; 215123 ; China
  • 关键词:polymer solar cells ; conjugated polymers ; side ; chain engineering ; photovoltaic materials ; 2D ; conjugated polymers
  • 刊名:SCIENCE CHINA Chemistry
  • 出版年:2015
  • 出版时间:February 2015
  • 年:2015
  • 卷:58
  • 期:2
  • 页码:192-209
  • 全文大小:1,784 KB
  • 参考文献:1. Heeger AJ. 25th Anniversary Article: bulk heterojunction solar cells: understanding the mechanism of operation. / Adv Mater, 2014, 26: 10鈥?8 CrossRef
    2. Thompson BC, Fr茅chet JMJ. Polymer-fullerene composite solar cells. / Angew Chem Int Ed, 2008, 47: 58鈥?7 CrossRef
    3. Li G, Shrotriya V, Huang J, Yao Y, Moriarty T, Emery K, Yang Y. High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. / Nat Mater, 2005, 4: 864鈥?68 CrossRef
    4. Li YF. Molecular design of photovoltaic materials for polymer solar cells: toward suitable electronic energy levels and broad absorption. / Acc Chem Res, 2012, 45: 723鈥?33 CrossRef
    5. Zhang ZG, Wang JZ. Structures and properties of conjugated donor-acceptor copolymers for solar cell applications. / J Mater Chem, 2012, 22: 4178鈥?187 CrossRef
    6. Duan C, Huang F, Cao Y. Recent development of push-pull conjugated polymers for bulk-heterojunction photovoltaics: rational design and fine tailoring of molecular structures. / J Mater Chem, 2012, 22: 10416鈥?0434 CrossRef
    7. Lei T, Wang JY, Pei J. Roles of flexible chains in organic semiconducting materials. / Chem Mater, 2013, 26: 594鈥?03 CrossRef
    8. Mei J, Bao ZN. Side chain engineering in solution-processable conjugated polymers. / Chem Mater, 2013, 26: 604鈥?15 CrossRef
    9. Yue W, Zhao Y, Shao S, Tian H, Xie Z, Geng Y, Wang F. Novel NIR-absorbing conjugated polymers for efficient polymer solar cells: effect of alkyl chain length on device performance. / J Mater Chem, 2009, 19: 2199鈥?206 CrossRef
    10. Marrocchi A, Lanari D, Facchetti A, Vaccaro L. Poly(3-hexylthiophene): synthetic methodologies and properties in bulk heterojunction solar cells. / Energy Environ Sci, 2012, 5: 8457鈥?474 CrossRef
    11. Osaka I, McCullough RD. Advances in molecular design and synthesis of regioregular polythiophenes. / Acc Chem Res, 2008, 41: 1202鈥?214 CrossRef
    12. Dang MT, Hirsch L, Wantz G, Wuest JD. Controlling the morphology and performance of bulk heterojunctions in solar cells. lessons learned from the benchmark poly(3-hexylthiophene):[6,6]-phenyl-C61-butyric acid methyl ester system. / Chem Rev, 2013, 113: 3734鈥?765 CrossRef
    13. McCullough RD, Tristram-Nagle S, Williams SP, Lowe RD, Jayaraman M. Self-orienting head-to-tail poly(3-alkylthiophenes): new insights on structure-property relationships in conducting polymers. / J Am Chem Soc, 1993, 115: 4910鈥?911 CrossRef
    14. Sirringhaus H, Tessler N, Friend RH. Integrated optoelectronic devices based on conjugated polymers. / Science, 1998, 280: 1741鈥?744 CrossRef
    15. Xu B, Holdcroft S. Molecular control of luminescence from poly(3-hexylthiophenes). / Macromolecules, 1993, 26: 4457鈥?460 CrossRef
    16. Causin V, Marega C, Marigo A, Valentini L, Kenny JM. Crystallization and melting behavior of poly(3-butylthiophene), poly(3-octylthiophene), and poly(3-dodecylthiophene). / Macromole-cules, 2004, 38: 409鈥?15 CrossRef
    17. Chen TA, Wu X, Rieke RD. Regiocontrolled synthesis of poly(3-alkylthiophenes) mediated by Rieke Zinc: their characterization and solid-state properties. / J Am Chem Soc, 1995, 117: 233鈥?44 CrossRef
    18. Osterbacka R, An CP, Jiang XM, Vardeny ZV. Two-dimensional electronic excitations in self-assembled conjugated polymer nanocrystals. / Science, 2000, 287: 839鈥?42 CrossRef
    19. Nguyen LH, Hoppe H, Erb T, G眉nes S, Gobsch G, Sariciftci NS. Effects of annealing on the nanomorphology and performance of poly(alkylthiophene):fullerene bulk-heterojunction solar cells. / Adv Funct Mater, 2007, 17: 1071鈥?078 CrossRef
    20. Cui CH, Sun YP, Zhang ZG, Zhang MJ, Zhang J, Li YF. Effect of branched side chains on the physicochemical and photovoltaic properties of poly(3-hexylthiophene) isomers. / Macromol Chem Phys, 2012, 213: 2267鈥?274 CrossRef
    21. He YJ, Chen HY, Hou JH, Li YF. Indene-C60 bisadduct: a new acceptor for high-performance polymer solar cells. / J Am Chem Soc, 2010, 132: 1377鈥?382 CrossRef
    22. Hou JH, Chen TL, Zhang SQ, Huo LJ, Sista S, Yang Y. An easy and effective method to modulate molecular energy level of poly(3-alkylthiophene) for high- / V oc polymer solar cells. / Macromolecules, 2009, 42: 9217鈥?219 CrossRef
    23. Zhang MJ, Guo X, Yang Y, Zhang J, Zhang ZG, Li YF. Downwards tuning the HOMO level of polythiophene by carboxylate substitution for high open-circuit-voltage polymer solar cells. / Polym Chem, 2011, 2: 2900鈥?906 CrossRef
    24. Zhang MJ, Guo X, Ma W, Ade H, Hou JH. A polythiophene derivative with superior properties for practical application in polymer solar cells. / Adv Mater, 2014, 26: 5880鈥?885 CrossRef
    25. Huo LJ, Zhou Y, Li YF. Alkylthio-substituted polythiophene: absorption and photovoltaic properties. / Macromol Rapid Commun, 2009, 30: 925鈥?31 CrossRef
    26. Shi C, Yao Y, Yang, Pei QB. Regioregular copolymers of 3-alkoxythiophene and their photovoltaic application. / J Am Chem Soc, 2006, 128: 8980鈥?986 CrossRef
    27. Cheng YJ, Luo J, Huang S, Zhou X, Shi Z, Kim TD, Bale DH, Takahashi S, Yick A, Polishak BM, Jang SH, Dalton LR, Reid PJ, Steier WH, Jen AKY, Donor-acceptor thiolated polyenic chromophores exhibiting large optical nonlinearity and excellent photosta bility, / Chem Mater, 2008, 20: 5047鈥?054 CrossRef
    28. Zhang ZG, Min J, Zhang S, Zhang J, Zhang MJ, Li YF. Alkyl chain engineering on a dithieno 3,2-b:2鈥?3鈥?d silole-alt-dithienylthiazolo 5,4-d thiazole copolymer toward high performance bulk heterojunction solar cells. / Chem Commun, 2011, 47: 9474鈥?476 CrossRef
    29. Zhang MJ, Guo X, Li YF. Synthesis and characterization of a copolymer based on thiazolothiazole and dithienosilole for polymer solar cells. / Adv Energ Mater, 2011, 1: 557鈥?60 CrossRef
    30. Meager I, Ashraf RS, Mollinger S, Schroeder BC, Bronstein H, Beatrup D, Vezie MS, Kirchartz T, Salleo A, Nelson J, McCulloch I. Photocurrent enhancement from diketopyrrolopyrrole polymer solar cells through alkyl-chain branching point manipulation. / J Am Chem Soc, 2013, 135: 11537鈥?1540 CrossRef
    31. Price SC, Stuart AC, Yang L, Zhou H, You W. Fluorine substituted conjugated polymer of medium band gap yields 7% efficiency in polymer-fullerene solar cells. / J Am Chem Soc, 2011, 133: 4625鈥?631 CrossRef
    32. Qin R, Li W, Li C, Du C, Veit C, Schleiermacher HF, Andersson M, Bo Z, Liu Z, Inganas O, Wuerfel U, Zhang F. A planar copolymer for high efficiency polymer solar cells. / J Am Chem Soc, 2009, 131: 14612鈥?4613 CrossRef
    33. Nguyen TL, Choi H, Ko SJ, Uddin MA, Walker B, Yum S, Jeong JE, Yun MH, Shin TJ, Hwang S, Kim JY, Woo HY. Semi-crystalline photovoltaic polymers with efficiency exceeding 9% in a [similar]300 nm thick conventional single-cell device. / Energy Environ Sci, 2014, 7: 3040鈥?051 CrossRef
    34. Min J, Zhang ZG, Zhang S, Li YF. Conjugated side-chain-isolated D-A copolymers based on benzo[1,2-b:4,5-b鈥瞉dithiophene-alt-dithienylbenzotriazole: synthesis and photovoltaic properties. / Chem Mater, 2012, 24: 3247鈥?254 CrossRef
    35. Zhang G, Fu Y, Zhang Q, Xie Z. Benzo[1,2-b:4,5-b鈥瞉dithiophene-dioxopyrrolothiophen copolymers for high performance solar cells. / Chem Commun, 2010, 46: 4997鈥?999 CrossRef
    36. Graham KR, Cabanetos C, Jahnke JP, Idso MN, El Labban A, Ngongang Ndjawa GO, Heumueller T, Vandewal K, Salleo A, Chmelka BF, Amassian A, Beaujuge PM, McGehee MD. Importance of the donor:fullerene intermolecular arrangement for high-efficiency organic photovoltaics. / J Am Chem Soc, 2014, 136: 9608鈥?618 CrossRef
    37. Chen S, Tsang SW, Lai TH, Reynolds JR, So F. Dielectric effect on the photovoltage loss in organic photovoltaic cells. / Adv Mater, 2014, 26: 6125鈥?131 CrossRef
    38. Cho N, Schlenker CW, Knesting KM, Koelsch P, Yip HL, Ginger DS, Jen AKY. High-dielectric constant side-chain polymers show reduced non-geminate recombination in heterojunction solar cells. / Adv Energ Mater, 2014, 4: 1301857鈥?301862 CrossRef
    39. Schlenker CW, Thompson ME. The molecular nature of photovoltage losses in organic solar cells. / Chem Commun, 2011, 47: 3702鈥?716 CrossRef
    40. Hu X, Shi M, Chen J, Zuo L, Fu L, Liu Y, Chen H. Synthesis and photovoltaic properties of ester group functionalized polythiophene derivatives. / Macromol Rapid Commun, 2011, 32: 506鈥?11
    41. Huo LJ, Chen TL, Zhou Y, Hou JH, Chen HY, Yang Y, Li YF. Improvement of photoluminescent and photovoltaic properties of poly(thienylene vinylene) by carboxylate substitution. / Macromolecules, 2009, 42: 4377鈥?380 CrossRef
    42. Liang YY, Yu LP. A new class of semiconducting polymers for bulk heterojunction solar cells with exceptionally high performance. / Acc Chem Res, 2010, 43: 1227鈥?236 CrossRef
    43. Liang YY, Wu Y, Feng D, Tsai ST, Son HJ, Li G, Yu LP. Development of new semiconducting polymers for high performance solar cells. / J Am Chem Soc, 2008, 131: 56鈥?7 CrossRef
    44. Liang YY, Feng D, Wu Y, Tsai ST, Li G, Ray C, Yu LP. Highly efficient solar cell polymers developed via fine-tuning of structural and electronic properties. / J Am Chem Soc, 2009, 131: 7792鈥?799 CrossRef
    45. Hou JH, Chen HY, Zhang SQ, Chen RI, Yang Y, Wu Y, Li G. Synthesis of a low band gap polymer and its application in highly efficient polymer solar cells. / J Am Chem Soc, 2009, 131: 15586鈥?5587 CrossRef
    46. Chen HY, Hou JH, Zhang SQ, Liang YY, Yang G, Yang Y, Yu LP, Wu Y, Li G. Polymer solar cells with enhanced open-circuit voltage and efficiency. / Nat Photon, 2009, 3: 649鈥?53 CrossRef
    47. Huang Y, Huo LJ, Zhang SQ, Guo X, Han CC, Li YF, Hou JH. Sulfonyl: a new application of electron-withdrawing substituent in highly efficient photovoltaic polymer. / Chem Commun, 2011, 47: 8904鈥?906 CrossRef
    48. Hou JH, Li YF. Preparation methods of polythiophene derivatives with conjugated side chains. China Patent, CN200410088723.8, 2004-12-1
    49. Hou JH, Tan ZA, Li YF. Two dimensional conjugated polymer: synthesis and applications. China Patent, CN2005101322380.5, 2005-12-23
    50. Li YF, Zou YP. Conjugated polymer photovoltaic materials with broad absorption band and high charge carrier mobility. / Adv Mater, 2008, 20: 2952鈥?958 CrossRef
    51. Hou JH, Huo LJ, He C, Yang CH, Li YF. Synthesis and absorption spectra of poly(3-(phenylenevinyl)thiophene)s with conjugated side chains. / Macromolecules, 2006, 39: 594鈥?03 CrossRef
    52. Hou JH, Tan ZA, Yan Y, He YJ, Yang CH, Li YF. Synthesis and photovoltaic properties of two-dimensional conjugated polythiophenes with bi(thienylenevinylene) side chains. / J Am Chem Soc, 2006, 128: 4911鈥?916 CrossRef
    53. Hou JH, Yang CH, Li YF. Synthesis of regioregular side-chain conjugated polythiophene and its application in photovoltaic solar cells. / Synth Met, 2005, 153: 93鈥?6 CrossRef
    54. Hou JH, Yang CH, He C, Li YF. Poly[3-(5-octyl-thienylene-vinyl)-thiophene]: a side-chain conjugated polymer with very broad absorption. / Chem Commun, 2006, 871鈥?73
    55. Hou JH, Tan ZA, He YJ, Yang CH, Li YF. Branched poly(thienylene vinylene)s with absorption spectra covering the whole visible region. / Macromolecules, 2006, 39: 4657鈥?662 CrossRef
    56. Zhou EJ, Tan ZA, Huo LJ, He YJ, Yang CH, Li YF. Effect of two-dimensional conjugated structure on the optical, electrochemical, hole mobility and photovoltaic properties of polythiophenes. / J Phys Chem B, 2006, 110: 26062鈥?6067 CrossRef
    57. Zhou EJ, Hou JH, Yang CH, Li YF. Synthesis and characterization of a novel class of polythiophenes with conjugated side-chains containing carbon-carbon double or triple bonds. / J Polym Sci A: / Polym Chem, 2006, 44: 2206鈥?214 CrossRef
    58. Zhou EJ, He C, Tan ZA, Hou JH, Yang CH, Li YF. Effect of side-chain end groups on the optical, electrochemical and photovoltaic properties of side-chain conjugated polythiophenes. / J Polym Sci A: / Polym Chem, 2006, 44, 4916鈥?922 CrossRef
    59. Zou YP, Wu GL, Sang GY, Yang Y, Liu YQ, Li YF. Polythiophene derivative with phenothiazine-vinylene conjugated side chain: synthesis and its application in field-effect transistors. / Macromolecules, 2007, 40: 7231鈥?237 CrossRef
    60. Huang Y, Wang Y, Sang GY, Zhou EJ, Huo LJ, Liu YQ, Li YF. Polythiophene derivative with the simplest conjugated-side-chain of alkenyl: synthesis and application in polymer solar cells and field-effect transistors. / J Phys Chem B, 2008, 112: 13476鈥?3482 CrossRef
    61. Zhang ZG, Zhang S, Min J, Cui CH, Zhang J, Zhang MJ, Li YF. Conjugated side-chain isolated polythiophene: synthesis and photovoltaic application. / Macromolecules, 2012, 45: 113鈥?18 CrossRef
    62. Zhang ZG, Zhang S, Min J, Cui CH, Geng H, Shuai ZG, Li YF. Side chain engineering of polythiophene derivatives with a thienylenevinylene conjugated side chain for application in polymer solar cells. / Macromolecules, 2012, 45: 2312鈥?320 CrossRef
    63. Zhou EJ, Cong J, Hashimoto K, Tajima K. Introduction of a conjugated side chain as an effective approach to improving donor-acceptor photovoltaic polymers. / Energy Environ Sci, 2012, 5: 9756鈥?759 CrossRef
    64. Chao YIH, Jheng JF, Wu JS, Wu KY, Peng HH, Tsai MC, Wang CL, Hsiao YN, Wang CL, Lin CY, Hsu CS. Porphyrin-incorporated 2D D-A polymers with over 8.5% polymer solar cell efficiency. / Adv Mater, 2014, 26: 5205鈥?210 CrossRef
    65. Zhang ZG, Zhang KL, Liu G, Zhu CX, Neoh KG, Kang ET. Triphenylamine-fluorene alternating conjugated copolymers with pendant acceptor groups: synthesis, structure-property relationship, and photovoltaic application. / Macromolecules, 2009, 42: 3104鈥?111 CrossRef
    66. Zhang ZG, Liu YL, Yang Y, Hou K, Peng B, Zhao GJ, Zhang MJ, Guo X, Kang ET, Li YF. Alternating copolymers of carbazole and triphenylamine with conjugated side chain attaching acceptor groups: synthesis and photovoltaic application. / Macromolecules, 2010, 43: 9376鈥?383 CrossRef
    67. Duan C, Cai W, Huang F, Zhang J, Wang M, Yang T, Zhong C, Gong X, Cao Y. Novel silafluorene-based conjugated polymers with pendant acceptor groups for high performance solar cells. / Macromolecules, 2010, 43: 5262鈥?262 CrossRef
    68. Duan C, Chen KS, Huang F, Yip H-L, Liu S, Zhang J, Jen AKY, Cao Y. Synthesis, characterization, and photovoltaic properties of carbazole-based two-dimensional conjugated polymers with donor-蟺-bridge-acceptor side chains. / Chem Mater, 2010, 22: 6444鈥?452 CrossRef
    69. Duan C, Wang C, Liu S, Huang F, Choy CHW, Cao Y. Two-dimensional like conjugated copolymers for high efficiency bulkheterojunction solar cell application: Band gap and energy level engineering. / Sci China Chem, 2011, 54: 685鈥?94 CrossRef
    70. Hsu SL, Chen CM, Wei KH. Carbazole-based conjugated polymers incorporating push/pull organic dyes: synthesis, characterization, and photovoltaic applications. / J Polym Sci Part A: / Polym Chem, 2010, 48: 5126鈥?134 CrossRef
    71. Cheng YJ, Hung LC, Cao FY, Kao WS, Chang CY, Hsu CS. Alternating copolymers incorporating cyclopenta[2,1-b:3,4-b鈥瞉 dithiophene unit and organic dyes for photovoltaic applications. / J Polym Sci Part A: / Polym Chem, 2011, 49: 1791鈥?801 CrossRef
    72. Sahu D, Padhy H, Patra D, Huang JH, Chu CW, Lin HC. Synthesis and characterization of novel low-bandgap triphenylamine-based conjugated polymers with main-chain donors and pendent acceptors for organic photovoltaics. / J Polym Sci Part A: / Polym Chem, 2010, 48: 5812鈥?823 CrossRef
    73. Duan C, Cai W, Zhong C, Li Y, Wang X, Huang F, Cao Y. Bandgap engineering of indenofluorene-based conjugated copolymers with pendant donor-p-acceptor chromophores for photovoltaic applications. / J Polym Sci Part A: / Polym Chem, 2011, 49: 4406鈥?415 CrossRef
    74. Zhang ZG, Fan H, Min J, Zhang S, Zhang J, Zhang MJ, Guo X, Zhan XW, Li YF. Synthesis and photovoltaic properties of copolymers of carbazole and thiophene with conjugated side chain containing acceptor end groups. / Polym Chem, 2011, 2: 1678鈥?687 CrossRef
    75. Zhu E, Hai J, Wang Z, Ni B, Jiang Y, Bian L, Zhang F, Tang W. Two-dimensional polyfluorenes bearing thienylenevinylene p-bridge-acceptor side chains for photovoltaic solar cells. / J Phys Chem C, 2013, 117: 24700鈥?4709 CrossRef
    76. Duan C, Hu X, Chen K-S, Yip HL, Li W, Huang F, Jen AKY, Cao Y. Fully visible-light-harvesting conjugated polymers with pendant donor-p-acceptor chromophores for photovoltaic applications. / Sol Energy Mater Sol Cells, 2012, 97: 50鈥?8 CrossRef
    77. Huang F, Chen K-S, Yip H-L, Hau SK, Acton O, Zhang Y, Luo J, Jen AKY. Development of new conjugated polymers with donor-p-bridge-acceptor side chains for high performance solar cells. / J Am Chem Soc, 2009, 131: 13886鈥?3887 CrossRef
    78. Zeigler DF, Chen KS, Yip HL, Zhang Y, Jen AKY. Tunable light-harvesting polymers containing embedded dipolar chromophores for polymer solar cell applications. / J Polym Sci Part A: / Polym Chem, 2012, 50: 1362鈥?373 CrossRef
    79. Fan H, Zhang Z, Li YF, Zhan XW. Copolymers of fluorene and thiophene with conjugated side chain for polymer solar cells: effect of pendant acceptors. / J Polym Sci Part A: / Polym Chem, 2011, 49: 1462鈥?470 CrossRef
    80. Gu Z, Shen P, Tsang SW, Tao Y, Zhao B, Tang P, Nie Y, Fang Y, Tan ST. Development of a new benzo(1,2-b:4,5-b[prime or minute])dithiophene-based copolymer with conjugated dithienylbenzothiadiazole-vinylene side chains for efficient solar cells. / Chem Commun, 2011, 47: 9381鈥?383 CrossRef
    81. Wang C, Zhao B, Cao Z, Shen P, Tan Z, Li X, Tan ST. Enhanced power conversion efficiencies in bulk heterojunction solar cells based on conjugated polymer with isoindigo side chain. / Chem Commun, 2013, 49: 3857鈥?859 CrossRef
    82. Huang Y, Zhang M, Chen H, Wu F, Cao Z, Zhang L, Tan ST. Efficient polymer solar cells based on terpolymers with a broad absorption range of 300鈥?00 nm. / J Mater Chem A, 2014, 2: 5218鈥?223 CrossRef
    83. Shen P, Bin H, Xiao L, Li YF. Enhancing photovoltaic performance of copolymers containing thiophene unit with D-A conjugated side chain by rational molecular design. / Macromolecules, 2013, 46: 9575鈥?586 CrossRef
    84. Huo LJ, Hou JH. Benzo[1,2-b:4,5-b[prime or minute]]dithiophenebased conjugated polymers: band gap and energy level control and their application in polymer solar cells. / Polym Chem, 2011, 2: 2453鈥?461 CrossRef
    85. Huo LJ, Hou JH, Zhang SQ, Chen HY, Yang Y. A polybenzo[1,2-b:4,5-b鈥瞉dithiophene derivative with deep HOMO level and its application in high-performance polymer solar cells. / Angew Chem Int Ed, 2010, 49: 1500鈥?503 CrossRef
    86. Liang YY, Xu Z, Xia J, Tsai ST, Wu Y, Li G, Ray C, Yu LP. For the bright future鈥攂ulk heterojunction polymer solar cells with power conversion efficiency of 7.4%. / Adv Mater, 2010, 22: E135鈥揈138 CrossRef
    87. Huo LJ, Zhang SQ, Guo X, Xu F, Li YF, Hou JH. Replacing alkoxy groups with alkylthienyl groups: a feasible approach to improve the properties of photovoltaic polymers. / Angew Chem Int Ed, 2011, 50: 9697鈥?702 CrossRef
    88. Guo X, Zhang MJ, Ma W, Ye L, Zhang S, Liu S, Ade H, Huang F, Hou JH. Enhanced photovoltaic performance by modulating surface composition in bulk heterojunction polymer solar cells based on PBDTTT-C-T/PC71BM. / Adv Mater, 2014, 26: 4043鈥?049 CrossRef
    89. Liao SH, Jhuo HJ, Cheng YS, Chen SA. Fullerene Derivative-Doped Zinc Oxide Nanofilm as the cathode of inverted polymer solar cells with low-bandgap polymer (PTB7-Th) for high performance. / Adv Mater, 2013, 25: 4766鈥?771 CrossRef
    90. Li K, Li Z, Feng K, Xu X, Wang L, Peng Q. Development of large band-gap conjugated copolymers for efficient regular single and tandem organic solar cells. / J Am Chem Soc, 2013, 135: 13549鈥?3557 CrossRef
    91. Lee D, Hubijar E, Kalaw GJD, Ferraris JP. Enhanced and tunable open-circuit voltage using dialkylthio benzo[1,2-b:4,5-b鈥瞉dithiophene in polymer solar cells. / Chem Mater, 2012, 24: 2534鈥?540 CrossRef
    92. Cui CH, Wong WY, Li YF. Improvement of open-circuit voltage and photovoltaic properties of 2D-conjugated polymers by alkylthio substitution. / Energy Environ Sci, 2014, 7: 2276鈥?284 CrossRef
    93. Ye L, Zhang S, Zhao W, Yao H, Hou JH. Highly efficient 2D-conjugated benzodithiophene-based photovoltaic polymer with linear alkylthio side chain. / Chem Mater, 2014, 26: 3603鈥?605 CrossRef
    94. Wang M, Hu X, Liu P, Li W, Gong X, Huang F, Cao Y. Donor-acceptor conjugated polymer based on naphtho[1,2-c:5,6-c] bis[1,2,5]thiadiazole for high-performance polymer solar cells. / J Am Chem Soc, 2011, 133: 9638鈥?641 CrossRef
    95. Yang Y, Wu R, Wang X, Xu X, Li Z, Li K, Peng Q. Isoindigo fluorination to enhance photovoltaic performance of donor-acceptor conjugated copolymers. / Chem Commun, 2014, 50: 439鈥?41 CrossRef
    96. Peng Q, Liu X, Su D, Fu G, Xu J, Dai LM. Novel benzo[1,2-b:4,5-b鈥瞉dithiophene-benzothiadiazole derivatives with variable side chains for high-performance solar cells. / Adv Mater, 2011, 23: 4554鈥?558 CrossRef
    97. Yuan J, Zhai Z, Dong H, Li J, Jiang Z, Li Y, Ma W. Efficient polymer solar cells with a high open circuit voltage of 1 volt. / Adv Funct Mater, 2013, 23: 885鈥?92 CrossRef
    98. Zhou P, Zhang ZG, Li YF, Chen X, Qin JG. Thiophene-fused benzothiadiazole: a strong electron-acceptor unit to build D-A copolymer for highly efficient polymer solar cells. / Chem Mater, 2014, 26: 3495鈥?501 CrossRef
    99. Liu B, Chen X, He Y, Li YF, Xu X, Xiao L, Li L, Zou YP. New alkylthienyl substituted benzo[1,2-b:4,5-b[prime or minute]]dithio-phene-based polymers for high performance solar cells. / J Mater Chem A, 2013, 1: 570鈥?77 CrossRef
    100. Zhang SQ, Ye L, Zhao W, Liu D, Yao H, Hou JH. Side chain selection for designing highly efficient photovoltaic polymers with 2D-conjugated structure. / Macromolecules, 2014, 47: 4653鈥?659 CrossRef
    101. Zhang MJ, Guo X, Zhang SQ, Hou JH. Synergistic effect of fluorination on molecular energy level modulation in highly efficient photovoltaic polymers. / Adv Mater, 2014, 26: 1118鈥?123 CrossRef
    102. Xiao Z, Subbiah J, Sun K, Ji S, Jones DJ, Holmes AB, Wong WWH. Thiazolyl substituted benzodithiophene copolymers: synthesis, properties and photovoltaic applications. / J Mater Chem C, 2014, 2: 1306鈥?313 CrossRef
    103. Chung HS, Lee WH, Song CE, Shin Y, Kim J, Lee SK, Shin WS, Moon SJ, Kang IN. Highly conjugated side-chain-substituted benzo[1,2-b:4,5-b鈥瞉dithiophene-based conjugated polymers for use in polymer solar cells. / Macromolecules, 2013, 47: 97鈥?05 CrossRef
    104. Kularatne RS, Sista P, Nguyen HQ, Bhatt MP, Biewer MC, Stefan MC. Donor-acceptor semiconducting polymers containing benzodithiophene with bithienyl substituents. / Macromolecules, 2012, 45: 7855鈥?862 CrossRef
    105. Kuo CY, Nie W, Tsai H, Yen HJ, Mohite AD, Gupta G, Dattelbaum AM, William DJ, Cha KC, Yang Y, Wang L, Wang HL. Structural design of benzo[1,2-b:4,5-b鈥瞉dithiophene-based 2D conjugated polymers with bithienyl and terthienyl substituents toward photovoltaic applications. / Macromolecules, 2014, 47: 1008鈥?020 CrossRef
    106. Kim JH, Song CE, Kim B, Kang IN, Shin WS, Hwang DH. Thieno[3,2-b]thiophene-substituted benzo[1,2-b:4,5-b鈥瞉dithiophene as a promising building block for low bandgap semiconducting polymers for high-performance single and tandem organic photovoltaic cells. / Chem Mater, 2013, 26: 1234鈥?242 CrossRef
    107. Liu Q, Bao X, Wen S, Du Z, Han L, Zhu D, Chen Y, Sun M, Yang RQ. Hyperconjugated side chained benzodithiophene and 4,7-di-2-thienyl-2,1,3-benzothiadiazole based polymer for solar cells. / Polym Chem, 2014, 5: 2076鈥?082 CrossRef
    108. Sista P, Nguyen H, Murphy JW, Hao J, Dei DK, Palaniappan K, Servello J, Kularatne RS, Gnade BE, Xue B, Dastoor PC, Biewer MC, Stefan MC. Synthesis and electronic properties of semiconducting polymers containing benzodithiophene with alkyl phenylethynyl substituents. / Macromolecules, 2010, 43: 8063鈥?070 CrossRef
    109. Dou L, Gao J, Richard E, You J, Chen CC, Cha KC, He Y, Li G, Yang Y. Systematic investigation of benzodithiophene- and diketopyrrolopyrrole-based low-bandgap polymers designed for single junction and tandem polymer solar cells. / J Am Chem Soc, 2012, 134: 10071鈥?0079 CrossRef
    110. Zhang MJ, Gu Y, Guo X, Liu F, Zhang SQ, Huo LJ, Russell TP, Hou JH. Efficient polymer solar cells based on benzothiadiazole and alkylphenyl substituted benzodithiophene with a power conversion efficiency over 8%. / Adv Mater, 2013, 25: 4944鈥?949 CrossRef
    111. Yuan J, Xiao L, Liu B, Li YF, He Y, Pan C, Zou YP. New alkoxylphenyl substituted benzo[1,2-b:4,5-b[prime or minute]] dithiophene-based polymers: synthesis and application in solar cells. / J Mater Chem A, 2013, 1: 10639鈥?0645 CrossRef
    112. Ye L, Zhang SQ, Huo LJ, Zhang MJ, Hou JH. Molecular design toward highly efficient photovoltaic polymers based on two-dimensional conjugated benzodithiophene. / Acc Chem Res, 2014, 47: 1595鈥?603 CrossRef
    113. Hai J, Zhao B, Zhang F, Sheng C-X, Yin L, Li Y, Zhu E, Bian L, Wu H, Tang W. Synthesis and photovoltaic performance of novel thiophenyl-methylene-9 / H-fluorene-based low bandgap polymers. / Polymer, 2013, 54: 4930鈥?939 CrossRef
    114. Liu Q, Li C, Jin E, Lu Z, Chen Y, Li F, Bo ZS. 9-Arylidene-9 / H-fluorene-containing polymers for high efficiency polymer solar cells. / ACS Appl Mater Interfaces, 2014, 6: 1601鈥?607 CrossRef
    115. Zhang MJ, Guo X, Ma W, Zhang S, Huo LJ, Ade H, Hou JH. An easy and effective method to modulate molecular energy level of the polymer based on benzodithiophene for the application in polymer solar cells. / Adv Mater, 2014, 26: 2089鈥?095 CrossRef
    116. Almeataq MS, Yi H, Al-Faifi S, Alghamdi AAB, Iraqi A, Scarratt NW, Wang T, Lidzey DG. Anthracene-based donor-acceptor low band gap polymers for application in solar cells. / Chem Commun, 2013, 49: 2252鈥?254 CrossRef
    117. Wu Y, Li Z, Ma W, Huang Y, Huo LJ, Guo X, Zhang MJ, Ade H, Hou JH. PDT-S-T: a new polymer with optimized molecular conformation for controlled aggregation and p-p stacking and its application in efficient photovoltaic devices. / Adv Mater, 2013, 25: 3449鈥?455 CrossRef
    118. Li S, Yuan Z, Deng P, Sun B, Zhang Q. Synthesis and photovoltaic performances of a conjugated polymer based on a new naphthodifuran monomer. / Polym Chem, 2014, 5: 2561鈥?566 CrossRef
    119. Li S, Yuan J, Deng P, Ma W, Zhang Q. A comparative study of diketopyrrolopyrrole and isoindigo based polymers for organic photovoltaic applications. / Dyes Pigments, 2014, 106: 121鈥?27 CrossRef
    120. Zhou P, Dang D, Fan J, Xiong W, Yang C, Tan H, Wang Y, Liu Y, Zhu W. Increasing thiophene spacers between thieno[3,2-b] thiophene and benzothiadiazole units in backbone to enhance photovoltaic performance for their 2-D polymers. / Dyes Pigments, 2015, 112: 99鈥?04 CrossRef
    121. Peng Q, Lim SL, Wong IHK, Xu J, Chen ZK. Synthesis and photovoltaic properties of two-dimensional low-bandgap copolymers based on new benzothiadiazole derivatives with different conjugated arylvinylene side chains. / Chem Eur J, 2012, 18: 12140鈥?2151 CrossRef
    122. Shen P, Bin H, Chen X, Li YF. Side chain effect on photovoltaic properties of D-A copolymers based on benzodithiophene and thiophene-substituted bithiazole. / Org Electron, 2013, 14: 3152鈥?162 CrossRef
    123. Lin YZ, Zhan XW. Non-fullerene acceptors for organic photovoltaics: an emerging horizon. / Mater Horiz, 2014, 1: 470鈥?88 CrossRef
    124. Liu X, Cai P, Chen DC, Chen JW, Su SJ, Cao Y. Small molecular non-fullerene electron acceptors for P3HT-based bulk-heterojunction solar cells. / Sci China Chem, 2014, 57: 973鈥?81 CrossRef
    125. Holcombe TW, Norton JE, Rivnay J, Woo CH, Goris L, Piliego C, Griffini G, Sellinger A, Br茅das J-L, Salleo A, Fr茅chet JMJ. Steric control of the donor/acceptor interface: implications in organic photovoltaic charge generation. / J Am Chem Soc, 2011, 133: 12106鈥?2114 CrossRef
    126. Zhou EJ, Cong J, Wei Q, Tajima K, Yang CH, Hashimoto K. All-polymer solar cells from perylene diimide based copolymers: material design and phase separation control. / Angew Chem Int Ed, 2011, 50: 2799鈥?803 CrossRef
    127. Zhou EJ, Cong J, Hashimoto K, Tajima K. Control of miscibility and aggregation via the material design and coating process for high-performance polymer blend solar cells. / Adv Mater, 2013, 25: 6991鈥?996 CrossRef
    128. Shivanna R, Shoaee S, Dimitrov S, Kandappa SK, Rajaram S, Durrant JR, Narayan KS. Charge generation and transport in efficient organic bulk heterojunction solar cells with a perylene acceptor. / Energy Environ Sci, 2014, 7: 435鈥?41 CrossRef
    129. Zhang X, Lu Z, Ye L, Zhan CL, Hou JH, Zhang S, Jiang B, Zhao Y, Huang J, Zhang S, Liu Y, Shi Q, Liu Y, Yao JN. A potential perylene diimide dimer-based acceptor material for highly efficient solution-processed non-fullerene organic solar cells with 4. 03% efficiency. / Adv Mater, 2013, 25: 5791鈥?797 CrossRef
    130. Lin YZ, Wang Y, Wang J, Hou JH, Li YF, Zhu DB, Zhan XW. A star-shaped perylene diimide electron acceptor for high-performance organic solar cells. / Adv Mater, 2014, 26: 5137鈥?142 CrossRef
    131. Mori D, Benten H, Okada I, Ohkita H, Ito S. Highly efficient charge-carrier generation and collection in polymer/polymer blend solar cells with a power conversion efficiency of 5.7%. / Energy Environ Sci, 2014, 7: 2939鈥?943 CrossRef
    132. Zhang Y, Li CZ, Chueh CC, Williams ST, Jiang W, Wang ZH, Yu JS, Jen AKY. Integrated molecular, interfacial, and device engineering towards high-performance non-fullerene based organic solar cells. / Adv Mater, 2014, 26: 5708鈥?714 CrossRef
    133. Zhan XW, Tan ZA, Domercq B, An Z, Zhang X, Barlow S, Li YF, Zhu DB, Kippelen B, Marder SR. A high-mobility electron-transport polymer with broad absorption and its use in field-effect transistors and all-polymer solar cells. / J Am Chem Soc, 2007, 129: 7246鈥?247 CrossRef
    134. Liao XX, Zhao X, Zhang ZG, Wang HQ, Zhan X, Li Y, Wang J, Zheng JC. All-polymer solar cells based on side-chain-isolated polythiophenes and poly(perylene diimide-alt-dithienothiophene). / Sol Energy Mater Sol Cells, 2013, 117: 336鈥?42 CrossRef
    135. Jiang W, Ye L, Li X, Xiao C, Tan F, Zhao W, Hou JH, Wang ZH. Bay-linked perylene bisimides as promising non-fullerene acceptors for organic solar cells. / Chem Commun, 2014, 50: 1024鈥?026 CrossRef
    136. Ye L, Jiang W, Zhao W, Zhang S, Qian D, Wang ZH, Hou JH. Selecting a donor polymer for realizing favorable morphology in efficient non-fullerene acceptor-based solar cells. / Small, 2014, 10: 4658鈥?663 CrossRef
    137. Mori D, Benten H, Okada I, Ohkita H, Ito S. Low-bandgap donor/acceptor polymer blend solar cells with efficiency exceeding 4%. / Adv Energ Mater, 2014, 4: 1301006 CrossRef
    138. Mu C, Liu P, Ma W, Jiang K, Zhao J, Zhang K, Chen Z, Wei Z, Yi Y, Wang J, Yang S, Huang F, Facchetti A, Ade H, Yan H. High-efficiency all-polymer solar cells based on a pair of crystalline low-bandgap polymers. / Adv Mater, 2014, 26: 7224鈥?230 CrossRef
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Chinese Library of Science
    Chemistry
  • 出版者:Science China Press, co-published with Springer
  • ISSN:1869-1870
文摘
In recent years, conjugated polymers have attracted great attention in the application as photovoltaic donor materials in polymer solar cells (PSCs). Broad absorption, lower-energy bandgap, higher hole mobility, relatively lower HOMO energy levels, and higher solubility are important for the conjugated polymer donor materials to achieve high photovoltaic performance. Side-chain engineering plays a very important role in optimizing the physicochemical properties of the conjugated polymers. In this article, we review recent progress on the side-chain engineering of conjugated polymer donor materials, including the optimization of flexible side-chains for balancing solubility and intermolecular packing (aggregation), electron-withdrawing substituents for lowering HOMO energy levels, and two-dimension (2D)-conjugated polymers with conjugated side-chains for broadening absorption and enhancing hole mobility. After the molecular structural optimization by side-chain engineering, the 2D-conjugated polymers based on benzodithiophene units demonstrated the best photovoltaic performance, with power-conversion efficiency higher than 9%.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700