Solvothermal synthesis of oxygen/nitrogen functionalized graphene-like materials with diversified morphology from different carbon sources and their fluorescence properties
详细信息    查看全文
  • 作者:Feng Yang (1)
    Meilian Zhao (1)
    Hongyun Ji (2)
    Duhong He (1)
    Li Wu (3)
    Baozhan Zheng (1)
    Dan Xiao (1) (2)
    Yong Guo (1)

    1. College of Chemistry
    ; Sichuan University ; Chengdu ; 610064 ; People鈥檚 Republic of China
    2. College of Chemical Engineering
    ; Sichuan University ; Chengdu ; 610064 ; People鈥檚 Republic of China
    3. Analytical & Testing Center
    ; Sichuan University ; Chengdu ; 610064 ; People鈥檚 Republic of China
  • 刊名:Journal of Materials Science
  • 出版年:2015
  • 出版时间:February 2015
  • 年:2015
  • 卷:50
  • 期:3
  • 页码:1300-1308
  • 全文大小:1,651 KB
  • 参考文献:1. Mueller ML, Yan X, McGuire JA, Li L-s (2010) Triplet states and electronic relaxation in photoexcited graphene quantum dots. Nano Lett 10:2679鈥?682 CrossRef
    2. Pan D, Zhang J, Li Z, Wu M (2010) Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots. Adv Mater 22(6):734鈥?38 CrossRef
    3. Yan X, Cui X, Li L-s (2010) Synthesis of large, stable colloidal graphene quantum dots with tunable size. J Am Chem Soc 132(17):5944鈥?945 CrossRef
    4. Jang WS, Chae SS, Lee SJ, Song KM, Baik HK (2012) Improved electrical conductivity of a non-covalently dispersed graphene-carbon nanotube film by chemical p-type doping. Carbon 50(3):943鈥?51 CrossRef
    5. Yu D, Dai L (2010) Self-assembled graphene/carbon nanotube hybrid films for supercapacitors. J Phys Chem Lett 1:467鈥?70 CrossRef
    6. Zhang M, Bai L, Shang W, Xie W, Ma H, Fu Y, Fang D, Sun H, Fan L, Han M, Liu C, Yang S (2012) Facile synthesis of water-soluble, highly fluorescent graphene quantum dots as a robust biological label for stem cells. J Mater Chem 22(15):7461鈥?467 CrossRef
    7. Zhang Y, Nayak TR, Hong H, Cai W (2012) Graphene: a versatile nanoplatform for biomedical applications. Nanoscale 4(13):3833鈥?842 CrossRef
    8. Gong K, Du F, Xia Z, Durstock M, Dai L (2009) Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323(5915):760鈥?64 CrossRef
    9. Guo Y, Wang Z, Shao H, Jiang X (2013) Hydrothermal synthesis of highly fuorescent carbon nanoparticles from sodium citrate and their use for the detection of mercury ions. Carbon 52:583鈥?89 CrossRef
    10. Jeon I-Y, Yu D, Bae S-Y, Choi H-J, Chang DW, Dai L, Baek J-B (2011) Formation of large-area nitrogen-doped graphene film prepared from simple solution casting of edge-selectively functionalized graphite and its electrocatalytic activity. Chem Mater 23(17):3987鈥?992 CrossRef
    11. Li Y, Zhao Y, Cheng H, Hu Y, Shi G, Dai L, Qu L (2012) Nitrogen-doped graphene quantum dots with oxygen-rich functional groups. J Am Chem Soc 134(1):15鈥?8 CrossRef
    12. Liu H, Liu Y, Zhu D (2011) Chemical doping of graphene. J Mater Chem 21(10):3335鈥?345 CrossRef
    13. Lu W, Qin X, Liu S, Chang G, Zhang Y, Luo Y, Asiri AM, Al-Youbi AO, Sun X (2012) Economical, green synthesis of fluorescent carbon nanoparticles and their use as probes for sensitive and selective detection of mercury(II) ions. Anal Chem 84(12):5351鈥?357 CrossRef
    14. Wang H, Maiyalagan T, Wang X (2012) Review on recent progress in nitrogen-doped graphene: synthesis, characterization, and its potential applications. ACS Catal 2(5):781鈥?94 CrossRef
    15. Deng D, Pan X, Yu L, Cui Y, Jiang Y, Qi J, Li W-X, Fu Q, Ma X, Xue Q, Sun G, Bao X (2011) Toward N-doped graphene via solvothermal synthesis. Chem Mater 23(5):1188鈥?193 CrossRef
    16. Jin Z, Yao J, Kittrell C, Tour JM (2011) Large-scale growth and characterizations of nitrogen-doped monolayer graphene sheets. ACS Nano 5(5):4112鈥?117 CrossRef
    17. Li N, Wang Z, Zhao K, Shi Z, Gu Z, Xu S (2010) Large scale synthesis of n-doped multi-layered graphene sheets by simple arc-discharge method. Carbon 48(1):255鈥?59 CrossRef
    18. Li X, Wang H, Robinson JT, Sanchez H, Diankov G, Dai H (2009) Simultaneous nitrogen doping and reduction of graphene oxide. J Am Chem Soc 131(43):15939鈥?5944 CrossRef
    19. Panchakarla LS, Subrahmanyam KS, Saha SK, Govindaraj A, Krishnamurthy HR, Waghmare UV, Rao CNR (2009) Synthesis, structure, and properties of boron- and nitrogen-doped graphene. Adv Mater 21(46):4726鈥?730
    20. Reddy ALM, Srivastava A, Gowda SR, Gullapalli H, Dubey M, Ajayan PM (2010) Synthesis of nitrogen-doped graphene films for lithium battery application. ACS Nano 4(11):6337鈥?342 CrossRef
    21. Wang X, Li X, Zhang L, Yoon Y, Weber PK, Wang H, Guo J, Dai H (2009) N-doping of graphene through electrothermal reactions with ammonia. Science 324(5928):768鈥?71 CrossRef
    22. Wei D, Liu Y, Wang Y, Zhang H, Huang L, Yu G (2009) Synthesis of n-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett 9(5):1752鈥?758 CrossRef
    23. Hull RV, Li L, Xing Y, Chusuei CC (2006) Pt nanoparticle binding on functionalized multiwalled carbon nanotubes. Chem Mater 18(7):1780鈥?788 CrossRef
    24. Wang Y, Iqbal Z, Mitra S (2005) Rapidly functionalized, water-dispersed carbon nanotubes at high concentration. J Am Chem Soc 128(1):95鈥?9 CrossRef
    25. Xin G, Hwang W, Kim N, Cho SM, Chae H (2010) A graphene sheet exfoliated with microwave irradiation and interlinked by carbon nanotubes for high-performance transparent flexible electrodes. Nanotechnology 21(40):405201鈥?05207 CrossRef
    26. Xu C, Chen J, Cui Y, Han Q, Choo H, Liaw PK, Wu D (2006) Influence of the surface treatment on the deposition of platinum nanoparticles on the carbon nanotubes. Adv Eng Mater 8(1鈥?):73鈥?7 CrossRef
    27. Wang Q, Zheng H, Long Y, Zhang L, Gao M, Bai W (2011) Microwave-hydrothermal synthesis of fluorescent carbon dots from graphite oxide. Carbon 49(9):3134鈥?140 CrossRef
    28. Peng H, Travas-Sejdic J (2009) Simple aqueous solution route to luminescent carbogenic dots from carbohydrates. Chem Mater 21(23):5563鈥?565 CrossRef
    29. Li L, Ji J, Fei R, Wang C, Lu Q, Zhang J, Jiang L, Zhu J (2012) A facile microwave avenue to electrochemiluminescent two-color graphene quantum dots. Adv Funct Mater 22:2971鈥?979 CrossRef
    30. Ciftan Hens S, Lawrence WG, Kumbhar AS, Shenderova O (2012) Photoluminescene nanostructures from graphite oxidation. J Phys Chem C 116(37):20015鈥?0022 CrossRef
    31. Kwon W, Rhee S-W (2012) Facile synthesis of graphitic carbon quantum dots with size tunability and uniformity using reverse micelles. Chem Commun 48(43):5256鈥?258 CrossRef
    32. Yang F, Zhao M, Zheng B, Xiao D, Wu L, Guo Y (2012) Influence of pH on the fluorescence properties of graphene quantum dots using ozonation pre-oxide hydrothermal synthesis. J Mater Chem 22(48):25471鈥?5479 CrossRef
    33. Li H, Kang Z, Liu Y, Lee S-T (2012) Carbon nanodots: synthesis, properties and applications. J Mater Chem 22(46):24230鈥?4253 CrossRef
    34. Tuinstra F, Koenig JL (1970) Raman spectrum of graphite. J Chem Phys 53(3):1126鈥?130 CrossRef
    35. Urbonaite S, H盲lldahl L, Svensson G (2008) Raman spectroscopy studies of carbide derived carbons. Carbon 46(14):1942鈥?947 CrossRef
    36. Yang C-M, Kaneko K, Yudasaka M, Iijima S (2002) Effect of purification on pore structure of HiPco single-walled carbon nanotube aggregates. Nano Lett 2(4):385鈥?88 CrossRef
    37. Zhao W, Song C, Pehrsson PE (2002) Water-soluble and optically pH-sensitive single-walled carbon nanotubes from surface modification. J Am Chem Soc 124(42):12418鈥?2419 CrossRef
    38. Satishkumar BC, Govindaraj A, Mofokeng J, Subbanna GN, Rao CNR (1996) Novel experiments with carbon nanotubes: opening, filling, closing and functionalizing nanotubes. J Phys B 29(21):4925鈥?934 CrossRef
    39. Shin D-W, Lee JH, Kim Y-H, Yu SM, Park S-Y, Yoo J-B (2009) A role of HNO3 on transparent conducting film with single-walled carbon nanotubes. Nanotechnology 20:475703鈥?75708 CrossRef
    40. Yu R, Chen L, Liu Q, Lin J, Tan K-L, Ng SC, Chan HSO, Xu G-Q, Hor TSA (1998) Platinum deposition on carbon nanotubes via chemical modification. Chem Mater 10(3):718鈥?22 CrossRef
    41. Forsman WC, Vogel FL, Carl DE, Hoffman J (1978) Chemistry of graphite intercalation by nitric acid. Carbon 16(4):269鈥?71 CrossRef
    42. Fan X, Peng W, Li Y, Li X, Wang S, Zhang G, Zhang F (2008) Deoxygenation of exfoliated graphite oxide under alkaline conditions: a green route to graphene preparation. Adv Mater 20(23):4490鈥?493 CrossRef
    43. Dong Y, Shao J, Chen C, Li H, Wang R, Chi Y, Lin X, Chen G (2012) Blue luminescent graphene quantum dots and graphene oxide prepared by tuning the carbonization degree of citric acid. Carbon 50:4738鈥?743 CrossRef
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Materials Science
    Characterization and Evaluation Materials
    Polymer Sciences
    Continuum Mechanics and Mechanics of Materials
    Crystallography
    Mechanics
  • 出版者:Springer Netherlands
  • ISSN:1573-4803
文摘
Doping nanocarbon with heteroatoms provides an attractive way to tune their intrinsic properties effectively and exploits advanced applications. We adopted a simple, one-step solvothermal method with sulfonitric mixture acids to prepare the nitrogen-doped fluorescent graphene-like materials with oxygen/nitrogen functional groups. Fluorescent graphene-like materials, which employed graphite, graphene oxide and glassy carbon as precursors, have good photostability. The chemical components and the degree of defects of on the surface of fluorescent materials were investigated by X-ray photoelectron spectroscopy (XPS) and Raman spectra, respectively. Transmission electron microscopy (TEM) images indicate that we have prepared graphene-like materials with obviously different morphology. Notably, fluorescent graphite and fluorescent glass carbon have similar fluorescence properties with different morphology.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700