Predicting suitable cultivation regions of medicinal plants with Maxent modeling and fuzzy logics: a case study of Scutellaria baicalensis in China
详细信息    查看全文
  • 作者:Linlin Zhang ; Bo Cao ; Chengke Bai ; Guishuang Li ; Mingce Mao
  • 关键词:Maxent modeling ; Fuzzy logics ; GIS ; Environmental factor ; Habitat distribution ; Scutellaria baicalensis Georgi
  • 刊名:Environmental Earth Sciences
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:75
  • 期:5
  • 全文大小:1,724 KB
  • 参考文献:Bai CK, Wen MM, Yu F, Li GS (2010) Methods on construction of core germplasm collection of Scutellaria baicalensis by ISSR marker. Chin Med Mater 33(11):1689–1694
    Bai CK, Wen MM, Zhang LJ, Li GS (2013) Genetic diversity and sampling strategy of Scutellaria baicalensis germplasm resources based on ISSR. Genet Resour Crop Evol 60(5):1673–1685CrossRef
    Barnosky AD, Matzke N, Tomiya S, Wogan GOU, Swartz B, Quental TB, Marshall C, McGuire JL, Lindsey EL, Maguire KC, Mersey B, Ferrer EA (2011) Has the Earth’s sixth mass extinction already arrived? Nature 471(7336):51–57CrossRef
    Bohnert HJ, Nelson DE, Jensen RG (1995) Adaptations to environmental stresses. Plant Cell 7:1099–1111CrossRef
    Boyer J (1982) Plant productivity and environment. Science 218(4571):443–448CrossRef
    Brito J, Acosta A, Álvares F, Cuzin F (2009) Biogeography and conservation of taxa from remote regions: an application of ecological-niche based models and GIS to North-African Canids. Biol Conserv 142(12):3020–3029CrossRef
    Chinese Pharmacopoeia Commission (2010) Pharmacopoeia of the People’s Republic of China. China Medical Science Press, Beijing, p 282
    Dombi J (1990) Membership function as an evaluation. Fuzzy Set Syst 35(1):1–21CrossRef
    Elith J, Leathwick J (2009) Species distribution models: ecological explanation and prediction across space and time. Annu Rev Ecol Evol S 40:677–697CrossRef
    Elith J, Burgman M, Regan H (2002) Mapping epistemic uncertainties and vague concepts in predictions of species distribution. Ecol Model 157(2–3):313–329CrossRef
    Elith J, Phillips S, Hastie T, Dudík M, Chee YE, Yates CJ (2011) A statistical explanation of MaxEnt for ecologists. Divers Distrib 17(1):43–57CrossRef
    Fortunel C, Paine C, Fine P, Kraft N, Baraloto C (2014) Environmental factors predict community functional composition in Amazonian forests. J Ecol 102:145–155CrossRef
    Franklin J (2009) Mapping species distributions: spatial inference and prediction. Cambridge University Press, Cambridge
    Gao Z, Huang K, Yang X, Xu H (1999) Free radical scavenging and antioxidant activities of flavonoids extracted from the radix of Scutellaria baicalensis Georgi. BBA-Gen Subj 1472(3):643–650CrossRef
    Guisan A, Zimmermann N (2000) Predictive habitat distribution models in ecology. Ecol Model 135(2–3):147–186CrossRef
    Humboldt A, Bonpland A (1807) Essai sur la géographie des plantes. Chez Levrault, Schoell, Paris
    Irfan-Ullah M, Amarnath G, Murthy M, Peterson A (2007) Mapping the geographic distribution of Aglaia bourdillonii Gamble (Meliaceae), an endemic and threatened plant, using ecological niche modeling. Biodivers Conserv 6:343–351CrossRef
    Jochum G, Mudge K, Thomas R (2007) Elevated temperatures increase leaf senescence and root secondary metabolite concentrations in the understory herb Panax quinquefolius (Araliaceae). Am J Bot 94(5):819–826CrossRef
    Kumar S, Stohlgren T (2009) Maxent modeling for predicting suitable habitat for threatened and endangered tree Canacomyrica monticola in New Caledonia. J Ecol Nat Environ 1(4):94–98
    Li F (2011) Research on the effect and its mechanism of genetic and environmental factors on the yielding and quality of medicinal Scutellaria baicalensis Georgi. Dissertation, University of Chinese Medicine
    Liu J, Zhang Y, Li J, Hu J, Li Z (2010) Influence of water stress on the physiological and biochemical characteristics of Scutellaria baicalensis Georgi. Agr Sci Technol 11(6):22–25
    Mittler R (2006) Abiotic stress, the field environment and stress combination. Trends Plant Sci 11(1):15–19CrossRef
    Peterson A, Soberón J, Pearson R, Anderson R, Martínez-Meyer E, Nakamura M, Araújo M (2011) Ecological niches and geographic distributions (MPB-49). Princeton University Press, Princeton
    Phillips S, Dudík M (2008) Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31(2):161–175CrossRef
    Phillips S, Anderson R R, Schapire R (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190((3-4)):231–259CrossRef
    Pulliam H (2000) On the relationship between niche and distribution. Ecol Lett 3(4):349–361CrossRef
    Ramakrishna A, Ravishankar G (2011) Influence of abiotic stress signals on secondary metabolites in plants. Plant Signal Behav 6(11):1720–1731CrossRef
    Robertson M, Villet M, Palmer A (2004) A fuzzy classification technique for predicting species’ distributions: applications using invasive alien plants and indigenous insects. Divers Distrib 10(5–6):461–474CrossRef
    Rüger N, Schlüter M, Matthies M (2005) A fuzzy habitat suitability index for Populus euphratica in the Northern Amudarya delta (Uzbekistan). Ecol Model 184(2–4):313–328CrossRef
    Scheper J, Holzschuh A, Kuussaari M, Potts S, Rundlöf M, Smith H, Kleijn D (2013) Environmental factors driving the effectiveness of European agri-environmental measures in mitigating pollinator loss—a meta-analysis. Ecol Lett 16(7):912–920CrossRef
    Sillero N (2011) What does ecological modelling model? A proposed classification of ecological niche models based on their underlying methods. Ecol Model 222(8):1343–1346CrossRef
    Song SH (2006) Estimation and HPLC Analysis of active ingredients in Scutellaria baicalensis Georgi. Dissertation, Shaanxi Normal University
    Tuan N, Qiu J, Verdoodt A, Li H, Van Ranst E (2011) Temperature and precipitation suitability evaluation for the winter wheat and summer maize cropping system in the Huang-Huai-Hai plain of China. Agr Sci China 10(2):275–288CrossRef
    Warren D, Seifert S (2011) Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria. Ecol Appl 21(2):335–342CrossRef
    Warren DL, Glor RE, Turelli M (2008) Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evolution 62(11):2868–2883CrossRef
    Wen MM (2012) Research on the genetic diversity and the construction of core germplasm collection of Scutellaria baicalensis by ISSR marker. Dissertation, Shaanxi Normal University
    Xiang QY, Boufford DE (2005) Flora of China. Science press, Beijing, 14, pp 206–221
    Yang X, Kushwaha S, Saran S, Xu J, Roy P (2013) Maxent modeling for predicting the potential distribution of medicinal plant Justicia adhatoda L. in Lesser Himalayan foothills. Ecol Eng 51:83–87CrossRef
    Zadeh LA (1965) Fuzzy sets. Inform Contr 8(3):338–353CrossRef
  • 作者单位:Linlin Zhang (1)
    Bo Cao (1)
    Chengke Bai (1) (2)
    Guishuang Li (1)
    Mingce Mao (3)

    1. College of Life Sciences, Shaanxi Normal University, Xi’an, 710062, China
    2. Co-Innovation Center for Qinba Regions’ Sustainable Development, Xi’an, 710062, China
    3. Meteorological Bureau of Shaanxi Province, Xi’an, 710064, China
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:None Assigned
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1866-6299
文摘
Scientific prediction of suitable cultivation regions is an effective way for the assessment of habitat suitability and resource conservation to protect endangered medicinal plants. In recent years, the natural habitat of Scutellaria baicalensis Georgi has been degenerating and disappearing in China owing to excessive market demand of medicinal plant resource. This paper reports a new approach to predict potential suitable cultivation regions and to explore the key environmental factors affecting the content of active ingredients in S. baicalensis using integrated Maxent (maximum entropy) modeling and fuzzy logics. The modeling procedure used 275 occurrence records and baicalin contents of S. baicalensis collected through 2000–2014, and 16 Worldclim environmental factors as well as HWSD soil data. The result showed that six environmental factors (alt, prec7, prec1, bio4, bio1 and t_ph) were determined as key influential factors that mostly affect both the habitat distribution and baicalin content of S. baicalensis. The highly suitable cultivation regions of S. baicalensis mainly distribute (with probability ≥0.50) in the northeast, the north-central and the northwest of China (total 419,857 km2). The statistically significant AUC (area under the curve) value (0.952) of ROC (receiver operating characteristic) curve indicated that integrated Maxent modeling and fuzzy logics could be used to predict the potential suitable cultivation regions of medicinal plants. These results could pave the road for the habitat conservation and resource utilization of endangered medicinal plants.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700