A fluorescent glucose bioassay based on the hydrogen peroxide-induced decomposition of a quencher system composed of MnO2 nanosheets and copper nanoclusters
详细信息    查看全文
文摘
The authors describe a fluorometric glucose assay that is based on the use of MnO2 nanosheets and copper nanoclusters (CuNCs) acting as nanoprobes. The CuNCs were synthesized by using bovine serum albumin as a template by chemical reduction of copper(II) sulfate. On addition of MnO2 nanosheets to a colloidal solution of CuNCs, the fluorescence of CuNCs (measured at excitation/emission wavelengths of 335/410 nm) is quenched. However, in the presence of enzymatically generated H2O2, the MnO2 nanosheets are reduced to form Mn(II) ions. As a result, fluorescence intensity recovers. The glucose assay is based on the enzymatic conversion of glucose by glucose oxidase to generate H2O2 and glucuronic acid. The calibration plot is linear in the 1 μM to 200 μM glucose concentration range, and the detection limit is 100 nM. The method was successfully applied to the determination of glucose in spiked human serum samples.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700