High PLED Enhancement by Surface Plasmon Coupling of Au Nanoparticles
详细信息    查看全文
  • 作者:Sy-Hann Chen (1)
    Chuan-Tai Yen (1)
    Chang-Feng Yu (1)
    Po-Ching Kao (1)
    Chia-Feng Lin (2)

    1. Department of Electrophysics
    ; National Chiayi University ; Chiayi ; 600 ; Taiwan
    2. Department of Materials Science and Engineering
    ; National Chung Hsing University ; Taichung ; 402 ; Taiwan
  • 关键词:Sputtering system ; Au nanoparticles ; Polymer light ; emitting diode ; Surface ; plasmon ; enhanced emission
  • 刊名:Plasmonics
  • 出版年:2015
  • 出版时间:April 2015
  • 年:2015
  • 卷:10
  • 期:2
  • 页码:257-261
  • 全文大小:1,203 KB
  • 参考文献:1. Kelly, KL, Coronado, E, Zhao, LL, Schatz, GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107: pp. 668 CrossRef
    2. Willets, KA, Duyne, RP (2007) Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem 58: pp. 267 CrossRef
    3. Chen, F, Johnston, RL (2009) Plasmonic properties of silver nanoparticles on two substrates. Plasmonics 4: pp. 147 CrossRef
    4. Lin, S, Wong, CY, Pun, EYB, Song, F (2010) The role of metal film electron density in a surface plasmon polariton assisted light emitter. Nanotechnology 21: pp. 055203 CrossRef
    5. Wu, XY, Liu, LL, Yu, TC, Yu, L, Xie, ZQ, Mo, YQ, Xu, SP, Ma, YG (2013) Gold nanoparticles modified ITO anode for enhanced PLEDs brightness and efficiency. J Mater Chem C 1: pp. 7020 CrossRef
    6. Ko, SJ, Choi, H, Lee, W, Kim, T, Lee, BR, Jung, JW, Jeong, JR, Song, MH, Lee, JC, Woo, HY, Kim, JY (2013) Highly efficient plasmonic organic optoelectronic devices based on a conducting polymer electrode incorporated with silver nanoparticles. Energy Environ Sci 6: pp. 1949 CrossRef
    7. Camelio, S, Vandenhecke, E, Rousselet, S, Babonneau, D (2014) Optimization of growth and ordering of Ag nanoparticle arrays on ripple patterned alumina surfaces for strong plasmonic coupling. Nanotechnology 25: pp. 035706 CrossRef
    8. Bohren, CF, Huffman, DR (1998) Absorption and scattering of light by small particles. Wiley-VCH, New York CrossRef
    9. Moon, JM, Bae, JH, Jeong, JA, Jeong, SW, Park, NJ, Kim, HK, Kang, JW, Kim, JJ, Yi, MS (2007) Enhancement of hole injection using ozone treated Ag nanodots dispersed on indium tin oxide anode for organic light emitting diodes. Appl Phys Lett 90: pp. 163516 CrossRef
    10. Ma, X, Benavides, J, Haughn, CR, Xu, F, Doty, M, Cloutiera, SG (2013) High polymer-LEDs enhancement by exciton-plasmon coupling using encapsulated metallic nanoparticles. Org Electron 14: pp. 1916 CrossRef
    11. Cheng, CH, Ting, JM (2007) Transparent conducting GZO, Pt/GZO, and GZO/Pt/GZO thin films. Thin Solid Films 516: pp. 203 CrossRef
    12. Hsieh, JH, Li, C, Wu, YY, Jang, SC (2011) Optical studies on sputter-deposited Ag-SiO2 nanoparticle composites. Thin Solid Films 519: pp. 7124 CrossRef
    13. Chen, SH, Li, YR, Yu, CF, Lin, CF, Kao, PC (2013) Enhanced luminescence efficiency of Ag nanoparticles dispersed on indium tin oxide for polymer light-emitting diodes. Opt Express 21: pp. 26236 CrossRef
    14. Lin, HN, Lin, HL, Wang, SS, Yu, LS, Perng, GY, Chen, SA, Chen, SH (2002) Nanoscale charge transport in an electroluminescent polymer investigated by conducting atomic force microscopy. Appl Phys Lett 81: pp. 2572 CrossRef
    15. Chen, SH (2005) Work function changes of treated indium-tin-oxide films for organic light emitting diodes investigated using scanning surface potential microscopy. J Appl Phys 97: pp. 073713 CrossRef
    16. Park, HJ, Vak, D, Noh, YY, Lim, B, Kim, DY (2007) Surface plasmon enhanced photoluminescence of conjugated polymers. Appl Phys Lett 90: pp. 161107 CrossRef
    17. Kummerlen, J, Leitner, A, Brunner, H, Aussenegg, FR, Wokaun, A (1993) Enhanced dye fluorescence over silver island films: analysis of the distance dependence. Mol Phys 80: pp. 1031 CrossRef
    18. Lozano, G, Louwers, DJ, Rodriguez, SRK, Murai, S, Jansen, OTA, Verschuuren, MA, Rivas, JG (2013) Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources. Light Sci Appl 2: pp. e66 CrossRef
    19. Fan, JCC, Goodenough, JB (1977) X-ray photoemission spectroscopy studies of Sn-doped indium-oxide films. J Appl Phys 48: pp. 3524 CrossRef
    20. Kim, JS, Cacialli, F, Friend, RH (2003) Surface conditioning of indium-tin oxide anodes for organic light-emitting diodes. Thin Solid Films 445: pp. 358 CrossRef
    21. Wi, JH, Woo, JC, Kim, CI (2011) Surface treatments of indium tin oxide films by using high density plasma. Thin Solid Films 519: pp. 6824 CrossRef
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Biotechnology
    Nanotechnology
    Biophysics and Biomedical Physics
    Biochemistry
  • 出版者:Springer US
  • ISSN:1557-1963
文摘
In this investigation, a simple, rapid, and low-cost sputtering system was employed to deposit a Au-nanoparticles (Au-NPs) layer in polymer light-emitting diode (PLED) at room temperature. The green-emitting PLEDs considered herein are single-layer devices based on a poly[9,9-dioctylfluorene-co-benzothiadiazole] emissive layer. This novel fabrication effectively avoids interruption or degradation of the charge transport properties of the active layer and therefore satisfies the high performance requirements for PLEDs. Because of the surface-plasmon-enhanced emission, the electroluminescence intensity of the green-emitting PLED based on the Au-NPs/ITO anode increased nearly 2.7-fold, compared to that of the standard green-emitting PLED with a bare ITO substrate.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700