Synthesis and characterization of nano silver-modified graphene/PEDOT:PSS for highly conductive and transparent nanocomposite films
详细信息    查看全文
  • 作者:Ching-Te Hsu ; Cheng Wu ; Ching-Nan Chuang ; Szu-Hsien Chen…
  • 关键词:Silver nanoparticles ; Reduced graphene oxide ; Poly (3 ; 4 ; ethyldioxythiophene) (PEDOT) ; Optical transparency ; Electrical conductivity
  • 刊名:Journal of Polymer Research
  • 出版年:2015
  • 出版时间:October 2015
  • 年:2015
  • 卷:22
  • 期:10
  • 全文大小:1,440 KB
  • 参考文献:1.Geim AK (2009) Graphene: status and prospects. Science 324:1530-534CrossRef
    2.Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183-91CrossRef
    3.Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666-69CrossRef
    4.Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Kim KS, Ahn JH, Kim P, Choi JY, Hong BH (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457:706-10CrossRef
    5.Park S, An JH, Jung IW, Piner RD, An SJ, Li XS, Velamakanni A, Ruoff RS (2009) Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents. Nano Lett 9:1593-597CrossRef
    6.Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558-565CrossRef
    7.Stoller MD, Park SJ, Zhu YW, An JH, Ruoff RS (2008) Graphene-based ultracapacitors. Nano Lett 8:3498-502CrossRef
    8.Liu Q, Liu ZF, Zhong XY, Yang LY, Zhang N, Pan GL, Yin SG, Chen Y, Wei J (2009) Polymer photovoltaic cells based on solution-processable graphene and P3HT. Adv Funct Mater 19:894-04CrossRef
    9.McAllister MJ, Li JL, Adamson DH, Schniepp HC, Abdala AA, Liu J, Herrera-Alonso M, Milius DL, Car R, Prud’homme RK, Aksay IA (2007) Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem Mater 19:4396-404CrossRef
    10.Acik M, Chabal YJ (2012) A review on reducing graphene oxide for band gap engineering. J Maters Sci Res 2:p101
    11.Jeong HK, Lee YP, Jin MH, Kim ES, Bae JJ, Lee YH (2009) Thermal stability of graphite oxide. Chem Phys Lett 470:255-58CrossRef
    12.Huh SH Thermal reduction of graphene oxide
    13.Szabo T, Tombacz E, Illes E, Dekany I (2006) Enhanced acidity and pH-dependent surface charge characterization of successively oxidized graphite oxides. Carbon 44:537-45CrossRef
    14.Titelman GI, Gelman V, Bron S, Khalfin RL, Cohen Y, Bianco-Peled H (2005) Characteristics and microstructure of aqueous colloidal dispersions of graphite oxide. Carbon 43:641-49CrossRef
    15.Hirata M, Gotou T, Horiuchi S, Fujiwara M, Ohba M (2004) Thin-film particles of graphite oxide 1: high-yield synthesis and flexibility of the particles. Carbon 42:2929-937
    16.Stankovich S, Piner RD, Nguyen ST, Ruoff RS (2006) Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets. Carbon 44:3342-347CrossRef
    17.Ju HM, Huh SH, Choi SH, Lee HL (2010) Structures of thermally and chemically reduced graphene. Mater Lett 64:357-60CrossRef
    18.Stankovich S, Piner RD, Chen XQ, Wu NQ, Nguyen ST, Ruoff RS (2006) Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate). J Mater Chem 16:155-58CrossRef
    19.Xu YX, Bai H, Lu GW, Li C, Shi GQ (2008) Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. J Am Chem Soc 130:5856-857CrossRef
    20.Si Y, Samulski ET (2008) Synthesis of water soluble graphene. Nano Lett 8:1679-682CrossRef
    21.Price BK, Tour JM (2006) Functionalization of single-walled carbon nanotubes “on water- J Am Chem Soc 128:12899-2904CrossRef
    22.Jo K, Lee T, Choi HJ, Park JH, Lee DJ, Lee DW, Kim BS (2011) Stable aqueous dispersion of reduced graphene nanosheets via non-covalent functionalization with conducting polymers and application in transparent electrodes. Langmuir 27:2014-018CrossRef
    23.Li YA, Tai NH, Chen SK, Tsai TY (2011) Enhancing the electrical conductivity of carbon-nanotube-based transparent conductive films using functionalized few-walled carbon nanotubes decorated with palladium nanoparticles as fillers. ACS Nano 5:6500-506CrossRef
    24.Wu ZC, Chen ZH, Du X, Logan JM, Sippel J, Nikolou M, Kamaras K, Reynolds JR, Tanner DB, Hebard AF, Rinzler AG (2004) Transparent, conductive carbon nanotube films. Science 305:1273-276CrossRef
    25.Liau SY, Read DC, Pugh WJ, Furr JR, Russell AD (1997) Interaction of silver nitrate with readily identifiable groups: relationship to the antibacterial action of silver ions. Lett Appl Microbiol 25:279-83CrossRef
    26.Gordon O, Slenters TV, Brunetto PS, Villaruz AE, Sturdevant DE, Otto M, Landmann R, Fromm KM (2010) Silver coordination polymers for prevention of implant infection: thiol interaction, impact on respiratory chain enzymes, and hydroxyl radical induction. Antimicrob Agents Chemother 54:4208-218CrossRef
    27.Groenendaal BL, Jonas F, Freitag D, Pielartzik H, Reynolds JR (2000) Poly(3,4-ethylenedioxythiophene) and its derivatives: past, present, and future. Adv Mater 12:481-94CrossRef
    28.Jonas F, Krafft W, Muys B (1995) Poly(3,4-ethylenedioxythiophene) - conductive coatings, technical applications and properties. Macromol Symp 100:169
  • 作者单位:Ching-Te Hsu (1)
    Cheng Wu (1)
    Ching-Nan Chuang (2)
    Szu-Hsien Chen (2)
    Wen-Yen Chiu (2)
    Kuo-Huang Hsieh (1) (2)

    1. Department of Chemical Engineering, National Taiwan University, Taipei, 106, Taiwan
    2. Institute of Polymer Science and Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 10617, Taiwan
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Polymer Sciences
    Industrial Chemistry and Chemical Engineering
    Characterization and Evaluation Materials
  • 出版者:Springer Netherlands
  • ISSN:1572-8935
文摘
A solution-processed metal nanoparticle/graphene composite thin film is developed by the functionalization of reduced graphene oxide (f-RGO) nanosheets with SH and SO3Na functional groups. The RGO is prepared by the oxidation of natural graphite powder and the thermal reduction of graphene oxide (GO). The f-RGO nanosheets show an improved dispersion in water through salty groups (SO3Na) and a high affinity to silver ions via thiol groups. After a simple in-situ reduction method, Ag NPs, with particle size ca. 10 nm, can be distributed uniformly on the surface of f-RGO and utilized as conductive spacers between the graphene nanosheets. Due to the strong π-π interactions between a graphene nanosheet and a rigid backbone of PEDOT, the Ag-decorated f-RGO nanosheets (Ag@f-RGO) can be well dispersed within poly (3,4-ethylenedioxythiophene):poly (stryene sulfonate) (PEDOT:PSS) to develop highly transparent conductive films. This solution-based method permits the resulting nanocomposite thin film to maintain the intrinsic electronic property of both components, showing a hybrid thin film with a high conductivity of 2078 S/cm and a transmittance of 88 % at a wavelength of 550 nm. By making good use of the conducting network built up by the graphene and conducting polymer, we demonstrate the promising application of Ag@f-RGO/PEDOT:PSS nanocomposite thin film as highly conductive and transparent electrodes for organic photovoltaic devices. Keywords Silver nanoparticles Reduced graphene oxide Poly (3,4-ethyldioxythiophene) (PEDOT) Optical transparency Electrical conductivity

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700