Improving the Thermoelectric Properties of Polyaniline by Introducing Poly(3,4-ethylenedioxythiophene)
详细信息    查看全文
  • 作者:Xiao Yang Wang ; Cheng Yan Liu ; Lei Miao ; Jie Gao…
  • 关键词:Polyaniline (PANI) ; poly(3 ; 4 ; ethylenedioxythiophene) (PEDOT) ; thermoelectric properties
  • 刊名:Journal of Electronic Materials
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:45
  • 期:3
  • 页码:1813-1820
  • 全文大小:3,028 KB
  • 参考文献:1.F.J. DiSalvo, Science 285, 703 (1999).CrossRef
    2.G.J. Snyder and E.S. Toberer, Nat. Mater. 7, 105 (2008).CrossRef
    3.M.S. Dresselhaus, G. Chen, M.Y. Tang, R.G. Yang, H. Lee, D.Z. Wang, and P. Gogna, Adv. Mater. 19, 1043 (2007).CrossRef
    4.P. Pichanusakorn and P. Bandaru, Mater. Sci. Eng. R 67, 19 (2010).CrossRef
    5.H. Kleinke, Chem. Mater. 22, 604 (2009).CrossRef
    6.M.G. Kanatzidis, Chem. Mater. 22, 648 (2009).CrossRef
    7.W. Liu, X. Yan, G. Chen, and Z. Ren, Nano Energy 1, 42 (2012).CrossRef
    8.Y. Du, S.Z. Shen, K. Cai, and P.S. Casey, Prog. Polym. Sci. 37, 820 (2012).CrossRef
    9.D.J. Bergman and O. Levy, J. Appl. Phys. 70, 6821 (1991).CrossRef
    10.C. Yu, Y.S. Kim, D. Kim, and J.C. Grunlan, Nano Lett. 8, 4428 (2008).CrossRef
    11.A.G. MacDiarmid, Angew. Chem. Int. Ed. 40, 2581 (2001).CrossRef
    12.R. Menon, C.O. Yoon, D. Moses, A.J. Heeger, and Y. Cao, Phys. Rev. B 48, 17685 (1993).CrossRef
    13.H. Yan and N. Toshima, Chem. Lett. 28, 1217 (1999).CrossRef
    14.F. Yakuphanoglu, B.F. Senkal, and A. Sarac, J. Electron. Mater. 37, 930 (2008).CrossRef
    15.X.B. Zhao, S.H. Hu, M.J. Zhao, and T.J. Zhu, Mater. Lett. 52, 147 (2002).CrossRef
    16.Y.Y. Wang, K.F. Cai, J.L. Yin, B.J. An, Y. Du, and X. Yao, J. Nanopart. Res. 13, 533 (2011).CrossRef
    17.N. Toshima, M. Imai, and S. Ichikawa, J. Electron. Mater. 40, 898 (2011).CrossRef
    18.H. Anno, M. Fukamoto, Y. Heta, K. Koga, H. Itahara, R. Asahi, R. Satomura, M. Sannomiya, and N. Toshima, J. Electron. Mater. 38, 1443 (2009).CrossRef
    19.O. Bubnova, Z.U. Khan, A. Malti, S. Braun, M. Fahlman, and M. Berggren, Nat. Mater. 10, 429 (2011).CrossRef
    20.G.H. Kim, L. Shao, K. Zhang, and K.P. Pipe, Nat. Mater. 12, 719 (2013).CrossRef
    21.Q. Wei, M. Mukaida, K. Kirihara, Y. Naitoh, and T. Ishida, Appl. Phys. Express 7, 10 (2014).
    22.N. Mateeva, H. Niculescu, J. Schlenoff, and L.R. Testardi, J. Appl. Phys. 83, 3111 (1998).CrossRef
    23.D.S. Maddison, J. Unsworth, and R.B. Roberts, Synth. Met. 26, 99 (1988).CrossRef
    24.H. Yoon, M. Chang, and J. Jang, Adv. Funct. Mater. 17, 431 (2007).CrossRef
    25.I.Y. Sapurina, J. Stejskal, M. Trchová, D. Hlavatá, and Y.F. Biryulin, Fuller. Nanotubes Carbon Nanostruct. 14, 447 (2006).CrossRef
    26.Y. Fu and R.L. Elsenbaumer, Chem. Mater. 6, 671 (1994).CrossRef
    27.J. Huang and M. Wan, J. Polym. Sci. Part A 37, 151 (1999).CrossRef
    28.M. Trchová, I. Šeděnková, and J. Stejskal, Synth. Met. 154, 1 (2005).CrossRef
    29.Y. Zhang, Y. Chu, and L. Dong, Nanotechnology 18, 435608 (2007).CrossRef
    30.W. Liu, J. Kumar, S. Tripathy, K.J. Senecal, and L. Samuelson, J. Am. Chem. Soc. 121, 71 (1999).CrossRef
    31.S.V. Selvaganesh, J. Mathiyarasu, K.L.N. Phani, and V. Yegnaraman, Nanoscale Res. Lett. 2, 546 (2007).CrossRef
    32.C. Kvarnström, H. Neugebauer, A. Ivaska, and N.S. Sariciftci, J. Mol. Struct. 521, 271 (2000).CrossRef
    33.P. Damlin, C. Kvarnström, and A. Ivaska, J. Electroanal. Chem. 570, 113 (2004).CrossRef
    34.M.C. Bernard and A. Hugot-Le Goff, Synth. Met. 85, 1145 (1997).CrossRef
    35.A. Gruger, A. Novak, A. Regis, and P. Colomban, J. Mol. Struct. 328, 153 (1994).CrossRef
    36.N.S. Sariciftci, M. Bartonek, H. Kuzmany, H. Neugebauer, and A. Neckel, Synth. Met. 29, 193 (1989).CrossRef
    37.J.P. Da Silva, S.C. De Torresi, D.L.A. De Faria, and M.L.A. Temperini, Synth. Met. 101, 834 (1999).CrossRef
    38.W.W. Chiu, J. Travaš-Sejdić, R.P. Cooney, and G.A. Bowmaker, J. Raman Spectrosc. 37, 1354 (2006).CrossRef
    39.H.K. Chaudhari and D.S. Kelkar, Polym. Int. 42, 380 (1997).CrossRef
    40.C. Meng, C. Liu, and S. Fan, Adv. Mater. 22, 535 (2010).CrossRef
    41.Y. Zhao, G.S. Tang, Z.Z. Yu, and J.S. Qi, Carbon 50, 3064 (2012).CrossRef
    42.M. He, J. Ge, Z. Lin, X. Feng, X. Wang, and H. Lu, Energy Environ. Sci. 5, 8351 (2012).CrossRef
    43.K.C. See, J.P. Feser, C.E. Chen, A. Majumdar, J.J. Urban, and R.A. Segalman, Nano Lett. 10, 4664 (2010).CrossRef
    44.N.E. Coates, S.K. Yee, B. Mcculloch, K.C. See, A. Majumdar, R.A. Segalman, and J.J. Urban, Adv. Mater. 25, 1629 (2013).CrossRef
  • 作者单位:Xiao Yang Wang (1)
    Cheng Yan Liu (1)
    Lei Miao (1)
    Jie Gao (2)
    Yu Chen (2)

    1. Guangxi Key Laboratory of Information Material, Guangxi Collaborative Innovation Center of Structure and Property for New Energy and Materials, School of Material Science and Engineering, Guilin University of Electronic Technology, No. 1 Jinji Rd, Guilin, 541004, People’s Republic of China
    2. Key Laboratory for Advanced Materials, Institute of Applied Chemistry, East China University of Science and Technology, No. 130 Meilong Rd, Shanghai, 200237, People’s Republic of China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Optical and Electronic Materials
    Characterization and Evaluation Materials
    Electronics, Microelectronics and Instrumentation
    Solid State Physics and Spectroscopy
  • 出版者:Springer Boston
  • ISSN:1543-186X
文摘
By using the parent monomers, 3,4-ethylenedioxythiophene and aniline, a series of nanocomposites consisting of different mass ratios of polyaniline (PANI) to poly(3,4-ethylenedioxythiophene) (PEDOT) have been successfully prepared in hydrochloric acid solution through oxidative polymerization, then redoped with p-toluenesulfonic acid (p-TSA). Firstly, PEDOT nanoparticles were fabricated via chemical oxidation polymerization in reverse (water-in-oil) microemulsions. Then, PANI-doped PEDOT nanoparticles were formed by oxidative polymerization of aniline to form PANI/PEDOT nanofibers. The resulting nanostructured components were characterized by scanning electron microscopy (SEM) and a series of spectroscopic methods. The presence of PEDOT increased the room-temperature electrical conductivity of the PANI/PEDOT nanocomposites by more than two orders of magnitude in comparison with the parent PANI. Moreover, the PANI/PEDOT nanocomposites showed better thermoelectric properties than PANI. Different concentrations of p-TSA also affected the electrical conductivity and Seebeck coefficient of the nanocomposites. With increasing temperature, both the electrical conductivity and Seebeck coefficient increased.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700