Study of the biosurfactant-producing profile in a newly isolatedRhodococcus ruber strain
详细信息    查看全文
  • 作者:Chenggang Zheng (1)
    Shuguang Li (2)
    Li Yu (3)
    Lixin Huang (3)
    Qinghong Wu (3)
  • 关键词:Rhodococcus ruber ; biomass ; emulsification index ; cellular hydrophobicity ; biosurfactant ; producing profile
  • 刊名:Annals of Microbiology
  • 出版年:2009
  • 出版时间:December 2009
  • 年:2009
  • 卷:59
  • 期:4
  • 页码:771-776
  • 全文大小:280KB
  • 参考文献:1. Bell K.S., Philp J.C., Aw D.W., Christofi N. (1998). The genus / Rhodococcus. J. Appl. Microbiol. 85: 195-10. CrossRef
    2. Bicca F.C., Fleck L.C., Ayub M.A.Z. (1999). Production of bio-surfactant by hydrocarbon degrading / Rhodococcus ruber and / Rhodococcus erythropolis. Rev. Microbiol., 30: 231-36. CrossRef
    3. Bradford M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72: 248-54. CrossRef
    4. Cooper D.G., Goldenberg B.G. (1987). Surface active agents from / Bacillus species. Appl. Environ. Microbiol., 55: 224-29.
    5. Desai J.D., Banat I.M. (1997). Microbial production of surfactants and their commercial potential. Microbiol. Mol. Biol., 61: 47-4.
    6. Dubois M., Gilles K.A., Hamilton J.K., Rebers R.A., Smith F. (1956). Colorimetric method for the determination of sugars and related substances. Anal. Chem., 28: 350-53. CrossRef
    7. Fleck L.C., Bicca F.C., Ayub M.A.Z. (2000). Physiological aspects of hydrocarbon emulsification, metal resistance and DNA profile of biodegrading bacteria isolated from oil polluted sites. Biotechnol. Lett., 22: 285-89. CrossRef
    8. Ghurye G.L., Vipulanandan C. (1994). A practical approach to biosurfactant production using nonaseptic fermentation of mixed cultures. Biotechnol. Bioeng., 44: 661-66. CrossRef
    9. Ivshina I.B., Kuyukina M.S., Philp J.C., Christofi N. (1998). Oil desorption from mineral and organic materials using biosur factant complexes produced by / Rhodococcus species. World J. Microbiol. Biotechnol., 14: 711-17. CrossRef
    10. Kim J.S., Powalla M., Lang S., Wagner F., Lunsdorf H., Wray V. (1990). Microbial glycolipid production under nitrogen limita tion and resting cell condition. J. Bacterid., 13: 257-66.
    11. Kitamoto D., Isoda H., Nakahara T. (2002). Functions and poten tial applications of glycolipid biosurfactants: from energy-saving materials to gene delivery carriers. J. Biosci. Bioeng., 94: 187-01. CrossRef
    12. Kuyukina M.S., Ivshina I., Philip J., Christofi N., Dunbar S., Ritchkova M. (2001). Recovery of / Rhodococcus biosur factants using methyl tertiary-butyl ether extraction. J. Microbiol. 46: 149-56.
    13. Lang S., Wullbrandt D. (1999). Rhamnose lipids-biosynthe-sis, microbial production and application potentials. Appl. Microbiol. Biotechnol., 51: 22-2. CrossRef
    14. Lin T.C., Young C.C., Ho M., Yeh M.S., Chou CL, Wei Y.H., Chang J.S. (2005). Characterization of floating activity of indigenous diesel-assimilating bacterial isolates. J. Biosci. Bioeng., 99: 466-72. CrossRef
    15. Mutalik S.R., Vaidya B.K., Joshi R.M., Desai K.M., Nene S. (2008). Use of response surface optimization for the produc tion of biosurfactant from / Rhodococcus spp. MTCC 2574, Bioresource Tech., 99: 7875-880. CrossRef
    16. Philp J.C., Kuyukina M.S., Ivshina I.B., Dunbar S.A., Christofi N., Lang S., Wray V. (2002). Alkanotrophic / Rhodococcus ruber as a biosurfactant producer. Appl. Microbiol. Biotechnol., 59: 318-24. CrossRef
    17. Pirog T.P., Shevchuk T.A., Voloshina I.N., Karpenko E.V. (2004). Production of surfactants by / Rhodococcus erythropolis strain EK-1, grown on hydrophilic and hydrophobic substrates. Appl. Biochem. Microbiol., 40: 470-75. CrossRef
    18. Pruthi V., Cameotra S.S. (1997). Rapid identification of biosur factant producing bacterial strains using a cell surface hydro-phobicity technique. Biotechnol. Tech., 11: 671-74. CrossRef
    19. Rahman K.S.M., Rahman T.J., Kourkoutas Y., Petsas I., Marchant R., Banat I.M. (2003). Enhanced bioremediation of / n-alkane in petroleum sludge using bacterial consortium amended with rhamnolipid and micronutrients. Bioresource Tech., 90: 159-68. CrossRef
    20. Rodrigues L., Teixeira J., Oliveira R., van der Mei H.C (2006). Response surface optimization of the medium components for the production of biosurfactants by hydrophobic bacteria. Process Biochem., 41: 1-0. CrossRef
    21. Sandrin T.R., Chech A.M., Maier R.M. (2000). A rhamnolipid biosurfactant reduces cadmium toxicity during naphtha lene biodegradation. Appl. Environ. Microbiol., 66: 4585-588. CrossRef
    22. Wagner F., Behrendt U., Bock H., Kretschmer A., Lang S., Syldatk C (1983). Production and chemical characterisation of sur factants from / Rhodococcus erythropolis and / Pseudomonas sp. MUB grown on hydrocarbons. In: Zajic J.E., Cooper D.G., Jack TR., Kosaric N., Eds, Microbial Enhanced Oil Recovery, Pennwell, Tulsa, Okla, pp. 55-0,
    23. Wei Y.H., Lai H.C., Chen S.Y., Yeh M.S., Chang J.S. (2004). Biosurfactant production by / Serratia marcescens SS-1 and its isogenic strain SMΔR defective in SpnR, a quorum-sensing LuxR family protein. Biotechnol. Lett., 26: 799-02. CrossRef
  • 作者单位:Chenggang Zheng (1)
    Shuguang Li (2)
    Li Yu (3)
    Lixin Huang (3)
    Qinghong Wu (3)

    1. Institute of Porous Flow and Fluid Mechanics, Graduate University of Chinese Academy of Sciences, 065007, Langfang, China
    2. Coal-bed Gas Company, China National Petroleum Corporation, 100081, Beijing, China
    3. Research Institute of Petroleum Exploitation and Development (Langfang), China National Petroleum Corporation, 065007, Langfang, China
  • ISSN:1869-2044
文摘
A biosurfactant-producing strain Z25 was isolated from the oil production water in Daqing Oilfield, China. The strain was identified asRhodococcus ruber by 16S rDNA sequencing.Rhodococcus ruber Z25 showed a preference of alkanes as carbon sources for biosurfactant synthesis. The optimal biosurfactant production was achieved at the NaCI concentration of 2.5% at 34 °C. In batch cultivation, R. ruber Z25 exhibited a cell-growth associated biosurfactant-pro ducing process onn-hexadecane and the maximum yield of biosurfactant production was 13.34 g/L at 44 h. The rate of biosurfactant production per unit biomass (R(biosurf/biomass)) was used to characterize the biosurfactant-producing profile. A two-stage biosurfactant-producing profile of R.ruber Z25 was established by the R(biosurf/biomass) curve, exhibiting the biosurfactant production in correlation with cellular hydrophobicity and biomass accumulation. The crude biosurfactant was extracted by methyltert-butyl ether (MTBE) method and only one glycolipid fraction at Rf value of 0.64 was detected by thin layer chromatography (TLC) analysis.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700