Warburg meets non-coding RNAs: the emerging role of ncRNA in regulating the glucose metabolism of cancer cells
详细信息    查看全文
  • 作者:Chenxiao Yu ; Jiao Xue ; Wei Zhu ; Yang Jiao ; Shuyu Zhang ; Jianping Cao
  • 关键词:Warburg effect ; Aerobic glycolysis ; Glucose metabolism ; Non ; coding RNA (ncRNA) ; MicroRNA (miRNA) ; Long non ; coding RNA (lncRNA)
  • 刊名:Tumor Biology
  • 出版年:2015
  • 出版时间:January 2015
  • 年:2015
  • 卷:36
  • 期:1
  • 页码:81-94
  • 全文大小:825 KB
  • 参考文献:1. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646-4.
    2. Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324(5930):1029-3.
    3. Fantin VR, St-Pierre J, Leder P. Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell. 2006;9(6):425-4.
    4. Szymanski M et al. Noncoding RNA transcripts. J Appl Genet. 2003;44(1):1-0.
    5. Hüttenhofer A, Schattner P, Polacek N. Non-coding RNAs: hope or hype? Trends Genet. 2005;21(5):289-7.
    6. Kim VN. MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol. 2005;6(5):376-5.
    7. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281-7.
    8. Lee Y et al. MicroRNA maturation: stepwise processing and subcellular localization. EMBO J. 2002;21(17):4663-0.
    9. Han J et al. Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell. 2006;125(5):887-01.
    10. Denli AM et al. Processing of primary microRNAs by the Microprocessor complex. Nature. 2004;432(7014):231-.
    11. Yi R et al. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev. 2003;17(24):3011-.
    12. Vermeulen A et al. The contributions of dsRNA structure to Dicer specificity and efficiency. RNA. 2005;11(5):674-2.
    13. Gregory RI et al. Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell. 2005;123(4):631-0.
    14. Carthew RW, Sontheimer EJ. Origins and mechanisms of miRNAs and siRNAs. Cell. 2009;136(4):642-5.
    15. Khvorova A, Reynolds A, Jayasena SD. Functional siRNAs and miRNAs exhibit strand bias. Cell. 2003;115(2):209-6.
    16. Xu X et al. miRNA: the nemesis of gastric cancer (review). Oncol Lett. 2013;6(3):631-1.
    17. Ponting CP, Oliver PL, Reik W. Evolution and functions of long noncoding RNAs. Cell. 2009;136(4):629-1.
    18. Mercer TR, Dinger ME, Mattick JS. Long non-coding RNAs: insights into functions. Nat Rev Genet. 2009;10(3):155-.
    19. Mercer TR et al. Specific expression of long noncoding RNAs in the mouse brain. Proc Natl Acad Sci. 2008;105(2):716-1.
    20. Babak T, Blencowe BJ, Hughes TR. Considerations in the identification of functional RNA structural elements in genomic alignments. BMC Bioinforma. 2007;8(1):33.
    21. Seto AG, Kingston RE, Lau NC. The coming of age for PIWI proteins. Mol Cell. 2007;26(5):603-.
    22. Gunawardane LS et al. A slicer-mediated mechanism for repeat-associated siRNA 5′end formation in Drosophila. Science. 2007;315(5818):1587-0.
    23. Esteller M. Non-coding RNAs in human disease. Nat Rev Genet. 2011;12(12):861-4.
    24. Lehninger N, Cox MN. Principles of biochemistry. New York: WH Freeman & Co.; 2008.
    25. DeBerardinis RJ et al. Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci. 2007;104(49):19345-0.
    26. DeBerardinis RJ, Thompson CB. Cellular metabolism and disease: what do metabolic outliers teach us? Cell. 2012;148(6):1132-4.
    27. DeBerardinis RJ et al. Brick by brick: metabolism and tumor cell growth. Curr Opin Genet Dev. 2008;18(1):54-1.
    28. Denko NC. Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nat Rev Cancer. 2008;8(9):705-3.
    29. Quagliaro L et al. Intermittent high glucose enhances apoptosis related to oxidative stress in human umbilical vein endothelial cells the role of protein kinase C and NAD (P) H-oxidase activation. Diabetes. 2003;52(11):2795-04.
    30. Hay N, Sonenberg N. Upstream and downstream of mTOR. Genes Dev. 2004;18(16):1926-5.
    31. Inoki K, Zhu T, Guan K-L. TSC2 mediates cellular energy response to control cell growth and survival. Cell. 2003;115(5):577-0.
    32. Wouters BG, Koritzinsky M. Hypoxia signalling through mTOR and the unfolded protein response in cancer. Nat Rev Cancer. 2008;8(11):851-4.
    33. Zhu H et al. The Lin28/let-7 axis regulates glucose metabolism. Cell. 2011;147(1):81-4.
    34. Kato M et al. MicroRNA-192 in diabetic kidney glomeruli and its function in TGF-β-induced collagen expression via inhibition of E-box repressors. Proc Natl Acad Sci. 2007;104(9):3432-.
    35. Yang H et al. MicroRNA expression profiling in human ovarian cancer: miR-214 induces cell survival and cisplatin resistance by targeting PTEN. Cancer Res. 2008;68(2):425-3.
    36. Uesugi A et al. The tumor suppressive microRNA miR-218 targets the mTOR component Rictor and inhibits AKT phosphorylation in oral cancer. Cancer Res. 2011;71(17):5765-8.
    37. Wang J et al. MicroRNA-155 promotes autophagy to eliminate intracellular mycobacteria by targeting Rheb. PLoS Pathog. 2013;9(10):e1003697.
    38. Meng F et al. MicroRNA-21 regulates expression of the P
  • 作者单位:Chenxiao Yu (1) (2)
    Jiao Xue (1) (2)
    Wei Zhu (1) (2)
    Yang Jiao (1) (2)
    Shuyu Zhang (1) (2)
    Jianping Cao (1) (2)

    1. School of Radiation Medicine and Protection and Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Medical College of Soochow University, No. 199 Ren’ai Rd, Suzhou, 215123, China
    2. Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions and School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou, 215123, China
  • 刊物主题:Cancer Research;
  • 出版者:Springer Netherlands
  • ISSN:1423-0380
文摘
Unlike normal differentiated cells, cancer cells primarily rely on glycolysis to generate energy needed for cellular processes even in normoxia conditions. This phenomenon is called aerobic glycolysis or “the Warburg effect.-Aerobic glycolysis is inefficient to generate ATP, but the advantages it confers to cancer cells remain to be fully explained. Several oncogenic signaling pathways, interplaying with enzymes and kinases involved in glucose metabolism, participate in the switch from oxidative phosphorylation (OXPHOS) to aerobic glycolysis. Non-coding RNAs (ncRNAs) are a family of functional RNA molecules that are not further translated into proteins, which exert regulatatory roles in gene transcription and translation. ncRNAs, especially miRNAs and long non-coding RNAs (lncRNAs), may also have great effect on glucose metabolism by targeting not only glycolysis enzymes directly but also oncogenic signaling pathways indirectly. A better understanding of the Warburg effect and the regulatory role of ncRNAs in cancer glucose metabolism may contribute to the treatment of cancers.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700