Genomic and transcriptomic insights into the thermo-regulated biosynthesis of validamycin in Streptomyces hygroscopicus 5008
详细信息    查看全文
  • 作者:Hang Wu (1)
    Shuang Qu (1)
    Chenyang Lu (1)
    Huajun Zheng (2)
    Xiufen Zhou (1)
    Linquan Bai (1)
    Zixin Deng (1)
  • 关键词:Validamycin ; Genome ; Transcriptome ; Streptomyces ; Metabolism ; Thermo ; regulation
  • 刊名:BMC Genomics
  • 出版年:2012
  • 出版时间:December 2012
  • 年:2012
  • 卷:13
  • 期:1
  • 全文大小:797KB
  • 参考文献:1. Iwasa T, Higashide E, Shibata M: Studies of validamycins, new antibiotics. 3. Bioassay methods for the determination of validamycin. / J Antibiot (Tokyo) 1971,24(2):114-18. CrossRef
    2. Matsumoto K, Yano M, Miyake S, Ueki Y, Yamaguchi Y, Akazawa S, Tominaga Y: Effects of voglibose on glycemic excursions, insulin secretion, and insulin sensitivity in non-insulin-treated NIDDM patients. / Diabetes Care 1998,21(2):256-60. CrossRef
    3. Iwasa T, Yamamoto H, Shibata M: Studies on validamycins, new antibiotics. I. Streptomyces hygroscopicus var. limoneus nov. var., validamycin-producing organism. / J Antibiot (Tokyo) 1970,23(12):595-02. CrossRef
    4. Li L, Bai L, Zhou X, Deng Z: Enhanced validamycin production and gene expression at elevated temperature in Streptomyces hygroscopicus subsp. jinggangensis 5008. / Chin Sci Bull 2009,54(7):1204-209. CrossRef
    5. Liao Y, Wei ZH, Bai L, Deng Z, Zhong JJ: Effect of fermentation temperature on validamycin A production by Streptomyces hygroscopicus 5008. / J Biotechnol 2009,142(3-):271-74. CrossRef
    6. Xia TH, Jiao RS: Studies on glutamine synthetase from Streptomyces hygroscopicus var. jinggangensis. / Sci Sin B 1986,29(4):379-88.
    7. Asano N, Takeuchi M, Ninomiya K, Kameda Y, Matsui K: Microbial degradation of validamycin A by Flavobacterium saccharophilum. Enzymatic cleavage of C-N linkage in validoxylamine A. / J Antibiot (Tokyo) 1984,37(8):859-67. CrossRef
    8. Xue YP, Zheng YG, Shen YC: Preparation of trehalase inhibitor validoxylamine A by biocatalyzed hydrolysis of validamycin A with honeybee (Apis cerana Fabr.) beta-glucosidase. / Appl Biochem Biotechnol 2005,127(3):157-71. CrossRef
    9. Degwert U, van Hulst R, Pape H, Herrold RE, Beale JM, Keller PJ, Lee JP, Floss HG: Studies on the biosynthesis of the alpha-glucosidase inhibitor acarbose: valienamine, a m-C7N unit not derived from the shikimate pathway. / J Antibiot (Tokyo) 1987,40(6):855-61. CrossRef
    10. Toyokuni T, Jin W, Rinehart KL: Biosynthetic studies on validamycins: a C2-?C2-?C3 pathway to an aliphatic C7N unit. / J Am Chem Soc 1987,109(11):3481-482. CrossRef
    11. Mahmud T, Lee S, Floss HG: The biosynthesis of acarbose and validamycin. / Chem Rec 2001,1(4):300-10. CrossRef
    12. Lee S, Egelkrout E: Biosynthetic studies on the alpha-glucosidase inhibitor acarbose in Actinoplanes sp.: glutamate is the primary source of the nitrogen in acarbose. / J Antibiot (Tokyo) 1998,51(2):225-27. CrossRef
    13. Yu Y, Bai L, Minagawa K, Jian X, Li L, Li J, Chen S, Cao E, Mahmud T, Floss HG, / et al.: Gene cluster responsible for validamycin biosynthesis in Streptomyces hygroscopicus subsp. jinggangensis 5008. / Appl Environ Microbiol 2005,71(9):5066-076. CrossRef
    14. Bai L, Li L, Xu H, Minagawa K, Yu Y, Zhang Y, Zhou X, Floss HG, Mahmud T, Deng Z: Functional analysis of the validamycin biosynthetic gene cluster and engineered production of validoxylamine A. / Chem Biol 2006,13(4):387-97. CrossRef
    15. Jian X, Pang X, Yu Y, Zhou X, Deng Z: Identification of genes necessary for jinggangmycin biosynthesis from Streptomyces hygroscopicus 10-2. / Antonie Van Leeuwenhoek 2006,90(1):29-9. CrossRef
    16. Singh D, Seo MJ, Kwon HJ, Rajkarnikar A, Kim KR, Kim SO, Suh JW: Genetic localization and heterologous expression of validamycin biosynthetic gene cluster isolated from Streptomyces hygroscopicus var. limoneus KCCM 11405 (IFO 12704). / Gene 2006,376(1):13-3. CrossRef
    17. Minagawa K, Zhang Y, Ito T, Bai L, Deng Z, Mahmud T: ValC, a new type of C7-Cyclitol kinase involved in the biosynthesis of the antifungal agent validamycin A. / ChemBioChem 2007,8(6):632-41. CrossRef
    18. Xu H, Yang J, Bai L, Deng Z, Mahmud T: Genetically engineered production of 1,1'-bis-valienamine and validienamycin in Streptomyces hygroscopicus and their conversion to valienamine. / Appl Microbiol Biotechnol 2009,81(5):895-02. CrossRef
    19. Xu H, Zhang Y, Yang J, Mahmud T, Bai L, Deng Z: Alternative epimerization in C7N-aminocyclitol biosynthesis is catalyzed by ValD, a large protein of the vicinal oxygen chelate superfamily. / Chem Biol 2009,16(5):567-76. CrossRef
    20. Xu H, Minagawa K, Bai L, Deng Z, Mahmud T: Catalytic analysis of the validamycin glycosyltransferase (ValG) and enzymatic production of 4''-epi-validamycin A. / J Nat Prod 2008,71(7):1233-236. CrossRef
    21. Yang J, Xu H, Zhang Y, Bai L, Deng Z, Mahmud T: Nucleotidylation of unsaturated carbasugar in validamycin biosynthesis. / Org Biomol Chem 2011,9(2):438-49. CrossRef
    22. Asamizu S, Yang J, Almabruk KH, Mahmud T: Pseudoglycosyltransferase catalyzes nonglycosidic C-N coupling in validamycin A biosynthesis. / J Am Chem Soc 2011,133(31):12124-2135. CrossRef
    23. Zhou X, Wu H, Li Z, Bai L, Deng Z: Over-expression of UDP-glucose pyrophosphorylase increases validamycin A but decreases validoxylamine A production in Streptomyces hygroscopicus var. jinggangensis 5008. / Metab Eng 2011,13(6):768-76. CrossRef
    24. Ikeda H, Ishikawa J, Hanamoto A, Shinose M, Kikuchi H, Shiba T, Sakaki Y, Hattori M, Omura S: Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis. / Nat Biotechnol 2003,21(5):526-31. CrossRef
    25. Oliynyk M, Samborskyy M, Lester JB, Mironenko T, Scott N, Dickens S, Haydock SF, Leadlay PF: Complete genome sequence of the erythromycin-producing bacterium Saccharopolyspora erythraea NRRL23338. / Nat Biotechnol 2007,25(4):447-53. CrossRef
    26. Ohnishi Y, Ishikawa J, Hara H, Suzuki H, Ikenoya M, Ikeda H, Yamashita A, Hattori M, Horinouchi S: Genome sequence of the streptomycin-producing microorganism Streptomyces griseus IFO 13350. / J Bacteriol 2008,190(11):4050-060. CrossRef
    27. Zhao W, Zhong Y, Yuan H, Wang J, Zheng H, Wang Y, Cen X, Xu F, Bai J, Han X, / et al.: Complete genome sequence of the rifamycin SV-producing Amycolatopsis mediterranei U32 revealed its genetic characteristics in phylogeny and metabolism. / Cell Res 2010,20(10):1096-108. CrossRef
    28. Rokem JS, Lantz AE, Nielsen J: Systems biology of antibiotic production by microorganisms. / Nat Prod Rep 2007,24(6):1262-287. CrossRef
    29. Wang Y, Chu J, Zhuang Y, Xia J, Zhang S: Industrial bioprocess control and optimization in the context of systems biotechnology. / Biotechnol Adv 2009,27(6):989-95. CrossRef
    30. Bentley SD, Brown S, Murphy LD, Harris DE, Quail MA, Parkhill J, Barrell BG, McCormick JR, Santamaria RI, Losick R, / et al.: SCP1, a 356,023?bp linear plasmid adapted to the ecology and developmental biology of its host, Streptomyces coelicolor A3(2). / Mol Microbiol 2004,51(6):1615-628. CrossRef
    31. Jakimowicz D, Majka J, Messer W, Speck C, Fernandez M, Martin MC, Sanchez J, Schauwecker F, Keller U, Schrempf H, / et al.: Structural elements of the Streptomyces oriC region and their interactions with the DnaA protein. / Microbiology 1998,144(Pt 5):1281-290. CrossRef
    32. Horvath P, Barrangou R: CRISPR/Cas, the immune system of bacteria and archaea. / Science 2010,327(5962):167-70. CrossRef
    33. Uchiyama I: MBGD: a platform for microbial comparative genomics based on the automated construction of orthologous groups. / Nucleic Acids Res 2007,35(Database issue):D343-D346. CrossRef
    34. Capstick DS, Willey JM, Buttner MJ, Elliot MA: SapB and the chaplins: connections between morphogenetic proteins in Streptomyces coelicolor. / Mol Microbiol 2007,64(3):602-13. CrossRef
    35. San Paolo S, Huang J, Cohen SN, Thompson CJ: Rag genes: novel components of the RamR regulon that trigger morphological differentiation in Streptomyces coelicolor. / Mol Microbiol 2006,61(5):1167-186. CrossRef
    36. Wang J, Yu Y, Tang K, Liu W, He X, Huang X, Deng Z: Identification and analysis of the biosynthetic gene cluster encoding the thiopeptide antibiotic cyclothiazomycin in Streptomyces hygroscopicus 10-2. / Appl Environ Microbiol 2010,76(7):2335-344. CrossRef
    37. Olano C, Lombo F, Mendez C, Salas JA: Improving production of bioactive secondary metabolites in actinomycetes by metabolic engineering. / Metab Eng 2008,10(5):281-92. CrossRef
    38. Fernandez Martinez L, Bishop A, Parkes L, Del Sol R, Salerno P, Sevcikova B, Mazurakova V, Kormanec J, Dyson P: Osmoregulation in Streptomyces coelicolor: modulation of SigB activity by OsaC. / Mol Microbiol 2009,71(5):1250-262. CrossRef
    39. Willey JM, Gaskell AA: Morphogenetic signaling molecules of the Streptomycetes. / Chem Rev 2011,111(1):174-87. CrossRef
    40. Wray LV, Atkinson MR, Fisher SH: Identification and cloning of the glnR locus, which is required for transcription of the glnA gene in Streptomyces coelicolor A3(2). / J Bacteriol 1991,173(22):7351-360.
    41. Choulet F, Aigle B, Gallois A, Mangenot S, Gerbaud C, Truong C, Francou FX, Fourrier C, Guerineau M, Decaris B, / et al.: Evolution of the terminal regions of the Streptomyces linear chromosome. / Mol Biol Evol 2006,23(12):2361-369. CrossRef
    42. Komatsu M, Uchiyama T, Omura S, Cane DE, Ikeda H: Genome-minimized Streptomyces host for the heterologous expression of secondary metabolism. / Proc Natl Acad Sci USA 2010,107(6):2646-651. CrossRef
    43. Chen W, He F, Zhang X, Chen Z, Wen Y, Li J: Chromosomal instability in Streptomyces avermitilis: major deletion in the central region and stable circularized chromosome. / BMC Microbiol 2010, 10:198. CrossRef
    44. Sola-Landa A, Moura RS, Martin JF: The two-component PhoR-PhoP system controls both primary metabolism and secondary metabolite biosynthesis in Streptomyces lividans. / Proc Natl Acad Sci USA 2003,100(10):6133-138. CrossRef
    45. Lee EJ, Karoonuthaisiri N, Kim HS, Park JH, Cha CJ, Kao CM, Roe JH: A master regulator sigma B governs osmotic and oxidative response as well as differentiation via a network of sigma factors in Streptomyces coelicolor. / Mol Microbiol 2005,57(5):1252-264. CrossRef
    46. Lian W, Jayapal KP, Charaniya S, Mehra S, Glod F, Kyung YS, Sherman DH, Hu WS: Genome-wide transcriptome analysis reveals that a pleiotropic antibiotic regulator, AfsS, modulates nutritional stress response in Streptomyces coelicolor A3(2). / BMC Genomics 2008, 9:56. CrossRef
    47. Stein D, Cohen SN: A cloned regulatory gene of Streptomyces lividans can suppress the pigment deficiency phenotype of different developmental mutants. / J Bacteriol 1989,171(4):2258-261.
    48. Narva KE, Feitelson JS: Nucleotide sequence and transcriptional analysis of the redD locus of Streptomyces coelicolor A3(2). / J Bacteriol 1990,172(1):326-33.
    49. Yeats C, Bentley S, Bateman A: New knowledge from old: in silico discovery of novel protein domains in Streptomyces coelicolor. / BMC Microbiol 2003, 3:3. CrossRef
    50. Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, Braverman MS, Chen YJ, Chen Z, / et al.: Genome sequencing in microfabricated high-density picolitre reactors. / Nature 2005,437(7057):376-80.
    51. Delcher AL, Harmon D, Kasif S, White O, Salzberg SL: Improved microbial gene identification with GLIMMER. / Nucleic Acids Res 1999,27(23):4636-641. CrossRef
    52. Guo FB, Ou HY, Zhang CT: ZCURVE: a new system for recognizing protein-coding genes in bacterial and archaeal genomes. / Nucleic Acids Res 2003,31(6):1780-789. CrossRef
    53. Lowe TM, Eddy SR: tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. / Nucleic Acids Res 1997,25(5):955-64.
    54. Laslett D, Canback B: ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. / Nucleic Acids Res 2004,32(1):11-6. CrossRef
    55. Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C, Salzberg SL: Versatile and open software for comparing large genomes. / Genome Biol 2004,5(2):R12. CrossRef
    56. Grissa I, Vergnaud G, Pourcel C: CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats. / Nucleic Acids Res 2007,35(Web Server issue):W52-W57. CrossRef
    57. He Y, Wang Z, Bai L, Liang J, Zhou X, Deng Z: Two pHZ1358-derivative vectors for efficient gene knockout in Streptomyces. / J Microbiol Biotechnol 2010,20(4):678-82. CrossRef
    58. Gust B, Challis GL, Fowler K, Kieser T, Chater KF: PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. / Proc Natl Acad Sci USA 2003,100(4):1541-546. CrossRef
  • 作者单位:Hang Wu (1)
    Shuang Qu (1)
    Chenyang Lu (1)
    Huajun Zheng (2)
    Xiufen Zhou (1)
    Linquan Bai (1)
    Zixin Deng (1)

    1. State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, China
    2. Shanghai-MOST Key Laboratory of Disease and Health Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, 201203, China
文摘
Background Streptomyces hygroscopicus 5008 has been used for the production of the antifungal validamycin/jinggangmycin for more than 40?years. A high yield of validamycin is achieved by culturing the strain at 37°C, rather than at 30°C for normal growth and sporulation. The mechanism(s) of its thermo-regulated biosynthesis was largely unknown. Results The 10,383,684-bp genome of strain 5008 was completely sequenced and composed of a linear chromosome, a 164.57-kb linear plasmid, and a 73.28-kb circular plasmid. Compared with other Streptomyces genomes, the chromosome of strain 5008 has a smaller core region and shorter terminal inverted repeats, encodes more α/β hydrolases, major facilitator superfamily transporters, and Mg2+/Mn2+-dependent regulatory phosphatases. Transcriptomic analysis revealed that the expression of 7.5% of coding sequences was increased at 37°C, including biosynthetic genes for validamycin and other three secondary metabolites. At 37°C, a glutamate dehydrogenase was transcriptionally up-regulated, and further proved its involvement in validamycin production by gene replacement. Moreover, efficient synthesis and utilization of intracellular glutamate were noticed in strain 5008 at 37°C, revealing glutamate as the nitrogen source for validamycin biosynthesis. Furthermore, a SARP-family regulatory gene with enhanced transcription at 37°C was identified and confirmed to be positively involved in the thermo-regulation of validamycin production by gene inactivation and transcriptional analysis. Conclusions Strain 5008 seemed to have evolved with specific genomic components to facilitate the thermo-regulated validamycin biosynthesis. The data obtained here will facilitate future studies for validamycin yield improvement and industrial bioprocess optimization.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700