Stimulated myogenic differentiation of C2C12 murine myoblasts by using graphene oxide
详细信息    查看全文
  • 作者:Min Jeong Kim ; Jong Ho Lee ; Yong Cheol Shin
  • 关键词:Graphene oxide ; Myogenic differentiation ; Skeletal muscle regeneration ; Tissue engineering
  • 刊名:Journal of the Korean Physical Society
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:67
  • 期:11
  • 页码:1910-1914
  • 全文大小:2,023 KB
  • 参考文献:[1]B. Murtuza, J. W. Nichol and A. Khademhosseini, Tissue Eng: Part B - Rev 15, 443 (2009).CrossRef
    [2]J. A. Hubbell, Curr. Opin. Biotech. 14, 551 (2003).CrossRef
    [3]W. F. Liu and C. S. Chen, Mater. Today 8, 29 (2005).CrossRef
    [4]J. Lee, B. S. Kang, B. Hicks, T. F. Chancellor Jr., B. H. Chu, H-T. Wang, B. G. Keselowsky, F. Ren and T. P. Lele, Biomaterials 29, 3743 (2008).CrossRef
    [5]L. Little, K. E. Healy and D. Schaffer, Chem. Rev. 108, 1787 (2008).CrossRef
    [6]P. T. Oliveira, S. F. Zalzal,M. M. Beloti, A. L. Rosa and A. Nanci, J. Biomed. Mater. Res. A. 80, 554 (2007).CrossRef
    [7]T. J. Lee, S. Park, S. H. Bhang, J-K. Yoon, I. Jo, G-J. Jeong, B. H. Hong and B. S. Kim, Biochem. Biophys. Res. Commun. 452, 174 (2014).CrossRef
    [8]T. K. Das and S. Prusty, Plym. Plast. Technol. 52, 319 (2013).CrossRef
    [9]W. Paul and C. P. Sharma, Trends Biomater. Artif. Organs 25, 91 (2011).
    [10]S. K. Lee, H. Kim and B. S. Shim, Carbon Lett. 14, 63 (2013)CrossRef
    [11]Y. Wang, Z. Li, J. Wang, J. Li and Y. Lin, Trends Biotechnol. 32, 597 (2014).CrossRef
    [12]Z. Liu, J. T. Robinson, X. Sun and H. J. Dai, J. Am. Chem. Soc. 130, 10876 (2008).CrossRef
    [13]X. Sun, Z. Liu, K. Welsher, J. T. Robinson, A. Goodwin, S. Zaric and H. Dai, Nano Res. 1, 203 (2008).CrossRef
    [14]K. L. Aillon, Y. M. Xie, N. El-Gendy, C. J. Berkland and M. L. Forrest, Adv. Drug Deliver. Rev. 61, 457 (2009).CrossRef
    [15]O. Ruiz, K. Fernando, B. Wang, N. Brown, P. Luo, N. McNamara, M. Vangsness, Y. Sun and C. Bunker, ACS Nano 5, 8100 (2011).CrossRef
    [16]G. Y. Chen, D. W-P. Pang, S-M. Hwang, H-Y. Tuan and Y-C. Hu, Biomaterials. 33, 418 (2012).CrossRef
    [17]H. H. Yoon, S. H. Bhang, T. Kim, T. Yu, T. Hyeon and B. S. Kim, Adv. Funct. Mater. 24, 6455 (2014).CrossRef
    [18]W. Qi, W. Yuan, J. Yan and H. Wang, J. Mater. Chem. B 2, 5461 (2014).CrossRef
    [19]C. Mattevi et al., Adv. Funct. Mater. 19, 2577 (2009).CrossRef
    [20]D. Li, M. B. Muller, S. Gilje, M. B. Kaner and G. G. Wallace, Nat. Nanotechnol. 3, 101 (2008).CrossRef ADS
    [21]Y. Si and E. T. Samulski, Nano lett. 8, 1679 (2008).CrossRef ADS
    [22]W. S. Hummers Jr. and R. E. Offeman, J. Am. Chem. Soc. 80, 1339 (1958).CrossRef
    [23]S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen and R. S. Ruoff, Carbon 45, 1558 (2007).CrossRef
    [24]S. B. Ye, J. C. Feng and P. Y. Wu, J. Mater. Chem. A 1, 3495 (2013).CrossRef
    [25]X. Qi, T. N. Zhou, S. Deng, G. Y. Zong, X. L. Yao and Q. Fu, J. Mater. Sci. 49, 1785 (2014).CrossRef ADS
    [26]A. C. Ferrari and J. Robertson, Phys. Rev. B 61, 14095 (2000).CrossRef ADS
    [27]M. Lv, Y. Zhang, L. Liang, M. Wei, W. Hu, X. Li and Q. Huang, Nanoscale 4, 3861 (2012).CrossRef ADS
    [28]S. H. Ku and C. B. Park, Biomaterials 34, 2017 (2013).CrossRef
    [29]P. Bajaj, B. Reddy, L. Millet, C. Wei, P. Zorlutuna and G. Bao, Integr. Biol. 3, 897 (2011).CrossRef
  • 作者单位:Min Jeong Kim (1)
    Jong Ho Lee (1)
    Yong Cheol Shin (1)
    Linhua Jin (1)
    Suck Won Hong (1)
    Dong-Wook Han (1)
    Yong-Joo Kim (2)
    Bongju Kim (3)

    1. Department of Cogno-Mechatronics Engineering & BK21+ Nano-Integrated Cogno-Mechatronics Engineering, Pusan National University, Busan, 46241, Korea
    2. Department of Biosystems Machinery Engineering, Chungnam National University, Daejeon, 34134, Korea
    3. Clinical Dental Research Institute, Seoul National University Dental Hospital, Seoul, 03080, Korea
  • 刊物主题:Physics, general; Theoretical, Mathematical and Computational Physics; Particle and Nuclear Physics;
  • 出版者:Springer Netherlands
  • ISSN:1976-8524
文摘
Currently, applications of graphene and its derivatives have been reported in many fields. In particular, graphene oxide (GO) has been studied for biomedical applications, such as cell imaging, biosensors and drug delivery systems, because of its good biocompatibility and excellent physicochemical properties. Recently, much research has been conducted to control cell behavior, including attachment, proliferation and differentiation by using GO. On the other hand, the effects of GO on myogenic differentiation have not been explored. In the present study, the influence of GO on myogenic differentiation was investigated. This study assessed the cytotoxicity of GO and evaluated the myogenic differentiation of C2C12 murine myoblasts in growth media containing 10 μg/mL of GO. The physicochemical properties of GO were characterized by using atomic force microscopy (AFM) and Raman spectroscopy. The cytotoxicity was evaluated by using a WST-8 assay. An analysis of myogenic differentiation was performed by using immunofluorescence staining for the myosin heavy chain (MHC; myogenic differentiation marker) and was determined by calculating the amount of multinucleate myotube formation, the fusion index and the maturation index. GO did not exhibit cytotoxicity at low concentrations and effectively stimulated the myogenic differentiation of C2C12 murine myoblasts. Therefore, GO has potential skeletal tissue engineering applications. Keywords Graphene oxide Myogenic differentiation Skeletal muscle regeneration Tissue engineering

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700