Diurnal and longitudinal variations in the earth’s ionosphere in the period of solstice in conditions of a deep minimum of solar activity
详细信息    查看全文
  • 作者:M. V. Klimenko ; V. V. Klimenko ; F. S. Bessarab ; I. E. Zakharenkova…
  • 刊名:Cosmic Research
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:54
  • 期:1
  • 页码:8-19
  • 全文大小:1,211 KB
  • 参考文献:1. International Reference Ionosphere, Bilitza, D., Ed., 1990.
    2.Bilitza, D. and Reinisch, B.W., International reference ionosphere 2007: Improvements and new parameters, Adv. Space Res., 2008, vol. 42, pp. 599–609.CrossRef ADS
    3.Kunitsyn, V.E., Tereshchenko, E.D., and Andreeva, E.S., Radiotomografiya ionosfery (Radiotomography of the Ionosphere), Moscow: Fizmatlit, 2007.
    4.Schunk, R.W. and Nagy, A., Ionospheres: Physics, Plasma Physics and Chemistry, New York: Cambridge Univ. Press, 2009.CrossRef
    5.Eccles, D., King, J.W., and Rothwell, P., Longitudinal variations of the mid-latitude ionosphere produced by neutral-air winds. II: Comparisons of the calculated variations of electron concentration with data obtained from the Ariel I and Ariel III satellites, J. Atmos. Sol.–Terr. Phys., 1971, vol. 33, pp. 371–377.CrossRef ADS
    6.Deminov, M.G. and Karpachev, A.T., Latitudinal effect in the nocturnal mid-latitude ionosphere according to the Interkosmos-19 satellite data, Geomagn. Aeron., 1988, vol. 28, no. 1, pp. 76–80.ADS
    7.Karpachev, A.T., Characteristics of the global longitudinal effect in nighttime equatorial anomaly, Geomagn. Aeron., 1988, vol. 28, no. 1, pp. 46–49.ADS
    8.Karpachev, A.T., Gasilov, N.A., and Karpachev, O.A., Causes of NmF2 longitudinal variations at mid- and subauroral latitudes under summer nighttime conditions, Geomagn. Aeron. (Engl. Transl.), 2010, vol. 50, no. 4, pp. 482–488.CrossRef ADS
    9.Lin, C.H., Liu, C.H., Liu, J.Y., et al., Midlatitude summer nighttime anomaly of the ionospheric electron density observed by FORMOSAT-3/COSMIC, J. Geophys. Res., 2010, vol. 115, A03308. doi 10.1029/2009JA014084ADS
    10.Pedatella, N.M., Forbes, J.M., Maute, A., et al., Longitudinal variations in the F region ionosphere and the topside ionosphere–plasmasphere: Observations and model simulations, J. Geophys. Res., 2011, vol. 116, A12309. doi doi 10.1029/2011JA016600CrossRef ADS
    11.Clilverd, M.A., Meredith, N.P., Horne, R.B., et al., Longitudinal and seasonal variations in plasmaspheric electron density: Implications for electron precipitation, J. Geophys. Res., 2007, vol. 112, A11210. doi 10.1029/2007JA012416CrossRef ADS
    12.Menk, F.W., Ables, S.T., Grew, R.S., et al., The annual and longitudinal variations in plasmaspheric ion density, J. Geophys. Res., 2012, vol. 117, no. A3, A03215. doi 10.1029/2011JA017071ADS
    13.Afraimovich, E.L. and Perevalova, N.P., GPS-monitoring verkhnei atmosfery Zemli (GPS-Monitoring of the Upper Atmosphere), Irkutsk: GU NTs RVKh VSNTs SO RAMN, 2006.
    14.Cherniak, Iu.V., Zakharenkova, I.E., Dzubanov, D., and Krankowski, A., Analysis of the ionosphere/plasmasphere electron content variability during strong geomagnetic storm, Adv. Space Res., 2014, vol. 54, no. 4, pp. 586–594. doi 10.1016/j.asr.2014.04.011CrossRef ADS
    15.Klimenko, M.V., Klimenko, V.V., Bessarab, F.S., et al., Influence of geomagnetic storms of September 26–30, 2011, on the ionosphere and HF radiowave propagation. 1. Ionospheric effects, Geomagn. Aeron. (Engl. Transl.), 2015, vol. 55, no. 6, pp. 744–762.CrossRef ADS
    16.Klimenko, M.V., Klimenko, V.V., Ratovsky, K.G., et al., Mid-latitude summer evening anomaly (MSEA) in F2-layer electron density and total electron content at solar minimum, Adv. Space Res., 2015, vol. 56, no. 9, pp. 1951–1960.CrossRef ADS
    17.Afraimovich, E.L., Astafyeva, E.I., Kosogorov, E.A., and Yasyukevich, Yu.V., The mid-latitude field-aligned disturbances and its impact on differential GPS and VLBI, Adv. Space Res., 2011, vol. 47, pp. 1804–1813. doi 10.1016/j.asr.2010.06.030CrossRef ADS
    18.Cherniak, Iu.V., Zakharenkova, I.E., Krankowski, A., and Shagimuratov, I.I., Plasmaspheric electron content derived from GPS TEC and FORMOSAT-3/COSMIC measurements: Solar minimum conditions, Adv. Space Res., 2012, vol. 50, no. 4, pp. 427–440. doi 10.1016/j.asr.2012.04.002CrossRef ADS
    19.Klimenko, M.V., Klimenko, V.V., Zakharenkova, I.E., and Cherniak, Iu.V., The global morphology of the plasmaspheric electron content during Northern winter 2009 based on GPS/COSMIC observation and GSM TIP model results, Adv. Space Res., 2015, vol. 55, no. 8, pp. 2077–2085. doi 10.1016/j.asr.2014.06.027CrossRef ADS
    20.Namgaladze, A.A., Korenkov, Yu.N., Klimenko, V.V., et al., Global model of the thermosphere–ionosphere–protonosphere system, Pure Appl. Geophys., 1988, vol. 127, nos. 2–3, pp. 219–254.CrossRef ADS
    21.Namgaladze, A.A., Koren’kov, Yu.N., Klimenko, V.V., et al., Global numerical model of the thermosphere, ionosphere, and protonosphere of the Earth, Geomagn. Aeron., 1990, vol. 30, no. 4, pp. 612–619.ADS
    22.Korenkov, Yu.N., Klimenko, V.V., Forster, M., Bessarab, F.S., and Surotkin, V.A., Calculated and observed ionospheric parameters for Magion-2 passage above EISCAT on July 31, 1990, J. Geophys. Res., 1998, vol. 103, no. A7, pp. 14697–14710. doi 10.1029/98JA00210CrossRef ADS
    23.Hardy, D.A., Gussenhoven, M.S., and Holeman, E., A statistical model of auroral electron precipitation, J. Geophys. Res., 1985, vol. 90, no. A5, pp. 4229–4248. doi 10.1029/JA090iA05p04229CrossRef ADS
    24.Klimenko, V.V., Klimenko, M.V., and Bryukhanov, V.V., Numerical simulation of the electric field and zonal current in the Earth’s ionosphere. Statement of the problem and test calculations, Mat. Model., 2006, vol. 18, no. 3, pp. 77–92.MathSciNet MATH
    25.Klimenko, M.V., Klimenko, V.V., and Bryukhanov, V.V., Numerical simulation of the electric field and zonal current in the Earth’s ionosphere: The dynamo field and equatorial electrojet, Geomagn. Aeron. (Engl. Transl.), 2006, vol. 46, no. 4, pp. 457–466.CrossRef ADS
    26.Klimenko, M.V., Klimenko, V.V., and Bryukhanov, V.V., Numerical modeling of the equatorial electrojet UTvariation on the basis of the model GSM TIP, Adv. Radio Sci., 2007, vol. 5, pp. 385–392.CrossRef ADS
    27.Klimenko, M.V., Zhao, B., Karpachev, A.T., and Klimenko, V.V., Stratification of the low-latitude and near-equatorial F2-layer, topside ionization ledge, and F3-layer: What we know about this? A review, Int. J. Geophys., 2012, vol. 2012, no. 938057. doi 10.1155/2012/938057
    28.Klimenko, V.V., Karpachev, A.T., and Klimenko, M.V., Midlatitude anomalies in the diurnal course of electron density in the ionosphere, Khim. Fiz., 2013, vol. 32, no. 9, pp. 32–41.
    29.Karpachev, A.T., Klimenko, M.V., Klimenko, V.V., and Kuleshova, V.P., Statistical study of the F3-layer characteristics retrieved from Intercosmos-19 satellite data, J. Atmos. Sol.–Terr. Phys., 2013, vol. 103, pp. 121–128. doi 10.1016/j.jastp.2013.01.010CrossRef ADS
    30.Klimenko, M.V., Klimenko, V.V., Karpachev, A.T., et al., Spatial features of Weddell Sea and Yakutsk Anomalies in foF2 diurnal variations during high solar activity periods: Interkosmos-19 satellite and groundbased ionosonde observations, IRI reproduction and GSM TIP model simulation, Adv. Space Res., 2015, vol. 55, no. 8, pp. 2020–2032. doi 10.1016/j.asr.2014.12.032CrossRef ADS
    31.Galkin, I.A., Reinisch, B.W., Huang, X., and Bilitza, D., Assimilation of GIRO data into a real-time IRI, Radio Sci., 2012, vol. 47, RS0L07. doi 10.1029/2011RS004952CrossRef
    32.Reinisch, B.W. and Galkin, I.A., Global ionospheric radio observatory, Earth, Planets Space, 2011, vol. 63, no. 4, pp. 377–381.CrossRef ADS
    33.Damboldt, T. and Suessmann, P., Information document on the analysis and validity of present ITU foF2 and M(3000)F2 maps, International Telecommunication Union, 2011. http://​www.​itu.​int/​md/​R07-WP3LC-0086/​en
    34.Bilitza, D., Altadill, D., Zhang, Y., et al., The International Reference Ionosphere 2012—a model of international collaboration, J. Space Weather Space Clim., 2014, vol. 4, A07. doi doi 10.1051/swsc/2014004CrossRef
    35.Jones, W.B., Graham, R.P., and Leftin, M., Advances in ionospheric mapping by numerical methods, ESSA Technical Report ERL, ERL 107-ITS 70 1969, Washington DC: US Government Printing Office, 1969.
    36.Reinisch, B.W., Galkin, I.A., Khmyrov, G., et al., Automated collection and dissemination of ionospheric data from the digisonde network, Adv. Radio Sci., 2004, vol. 2, pp. 241–247.CrossRef ADS
    37.Khmyrov, G.M., Galkin, I.A., Kozlov, A.V., et al., Exploring digisonde ionogram data with SAO-X and DIDBase, in Radio Sounding and Plasma Physics, AIP Conference Proceedings, 2008, pp. 175–185.CrossRef
    38.Mannucci, A.J., Wilson, B.D., Yuan, D.N., et al., A global mapping technique for GPS derived ionosphere TEC measurements, Radio Sci., 1998, vol. 33, no. 3, pp. 565–582.CrossRef ADS
    39.Schaer, S., Beutler, G., and Rothacher, M., Mapping and predicting the ionosphere, in Proceedings of the IGS AC Workshop, 1998, pp. 307–320.
    40.Zakharenkova, I.E., Cherniak, Iu.V., Krankowski, A., and Shagimuratov, I.I., Vertical TEC representation by IRI 2012 and IRI Plas models for European midlatitudes, Adv. Space Res., 2014, vol. 55, no. 8, pp. 2070–2076. doi 10.1016/j.asr.2014.07.027CrossRef ADS
    41.Torr, M.R. and Torr, D.G., The seasonal behaviour of the F2-layer of the ionosphere, J. Atmos. Sol.–Terr. Phys., 1973, vol. 35, pp. 2237–2251.CrossRef ADS
    42.Torr, D.G., Torr, M.R., and Richards, P.G., Causes of the F region winter anomaly, Geophys. Res. Lett., 1980, vol. 7, no. 5, pp. 301–304.CrossRef ADS
    43.Fang, T.-W., Kil, H., Millward, G., et al., Causal link of the wave-4 structures inplasma density and vertical plasma drift in the low-latitude ionosphere, J. Geophys. Res., 2009, vol. 114, A10315. doi 10.1029/2009JA014460CrossRef ADS
    44.Oberheide, J., Forbes, J.M., Zhang, X., and Bruinsma, S.L., Wave-driven variability in the ionosphere–thermosphere–mesosphere system from timed observations: What contributes to the “wave 4?”, J. Geophys. Res., 2011, vol. 116, A01306. doi 10.1029/2010JA015911ADS
    45.Dudeney, J.R. and Piggott, W.R., Antarctic ionospheric research, in Upper Atmosphere Research in Antarctica, AGU 29, 1978, pp. 200–235.CrossRef
    46.Liu, H., Thampi, S.V., and Yamamoto, M., Phase reversal of the diurnal cycle in the midlatitude ionosphere, J. Geophys. Res., 2010, vol. 115, A01305. doi 10.1029/2009JA014689ADS
    47.Karpachev, A.T., Gasilov, N.A., and Karpachev, O.A., Morphology and causes of the Weddell Sea anomaly, Geomagn. Aeron. (Engl. Transl.), 2011, vol. 51, no. 6, pp. 828–840.
    48.Penndorft, R., The average ionospheric conditions over the Antarctic, Geomagn. Aeron., Antarct. Res. Ser., 1965, vol. 4, pp. 1–45.
  • 作者单位:M. V. Klimenko (1) (2)
    V. V. Klimenko (1)
    F. S. Bessarab (1) (2)
    I. E. Zakharenkova (1)
    A. M. Vesnin (3)
    K. G. Ratovsky (4)
    I. A. Galkin (3)
    Iu. V. Chernyak (5)
    Yu. V. Yasyukevich (4)
    N. A. Koren’kova (1)
    D. S. Kotova (1) (2)

    1. West Department of the Institute of Terrestrial Magnetism, the Ionosphere, and Radiowave Propagation, Russian Academy of Sciences, West Department, Kaliningrad, Russia
    2. Kant Baltic Federal University, Kaliningrad, Russia
    3. University of Massachusetts, Lowell, MA, USA
    4. Institute of Solar–Terrestrial Physics, Russian Academy of Sciences, Irkutsk, Russia
    5. University of Warmia and Mazury, Olsztyn, Poland
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Astronomy, Astrophysics and Cosmology
    Astrophysics
    Extraterrestrial Physics and Space Sciences
    Russian Library of Science
  • 出版者:MAIK Nauka/Interperiodica distributed exclusively by Springer Science+Business Media LLC.
  • ISSN:1608-3075
文摘
The results of studies of longitudinal and LT variations in parameters of the ionosphere–plasmasphere system, obtained using the Global Self-Consistent Model of the Thermosphere, Ionosphere and Protonosphere (GSM TIP), assimilation ionospheric model IRI Real-Time Assimilation Mapping (IRTAM), and satellite and ground-based observational data are presented in the paper. The study of the main morphological features of longitudinal and LT variations in the critical frequency of the ionospheric F2 layer (foF2) and total electron content (TEC) depending on latitude in the winter solstice during a solar-activity minimum (December 22, 2009) is carried out. It is shown that the variations in foF2 and TEC, on the whole, are identical, and so mutually substitutable, while creating empirical models of these parameters in quiet geomagnetic conditions. The longitudinal and LT variations in both foF2 and TEC are within an order of magnitude everywhere except for the equator anomaly region, where LT variation is larger by an order of magnitude than longitudinal variation. According to the results of the study, in the American longitudinal sector at all latitudes of the Southern (summer) Hemisphere, maxima of foF2 and TEC are formed. The near-equatorial and high-latitudinal maxima are separated out from these. The estimate of the contribution into the longitudinal variation in foF2 and TEC for various local time sectors and at various latitudes has been obtained for the first time. In the Southern (summer) Hemisphere, longitudinal variation in foF2 and TEC is formed in the nighttime. Original Russian Text © M.V. Klimenko, V.V. Klimenko, F.S. Bessarab, I.E. Zakharenkova, A.M. Vesnin, K.G. Ratovsky, I.A. Galkin, Iu.V. Chernyak, Yu.V. Yasyukevich, N.A. Koren’kova, D.S. Kotova, 2016, published in Kosmicheskie Issledovaniya, 2016, Vol. 54, No. 1, pp. 10–22.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700