Citrus tristeza virus infection in sweet orange trees and a mandarin × tangor cross alters low molecular weight metabolites assessed using gas chromatography mass spectrometry (GC/MS)
详细信息    查看全文
  • 作者:Alberto Pasamontes ; William H. K. Cheung ; Jason Simmons…
  • 关键词:Citrus tristeza virus (CTV) ; Feature selection ; Cross ; validation ; Partial least square discriminant analysis (PLSDA) ; Mass spectrometry ; Gas chromatography ; Biomarker discovery
  • 刊名:Metabolomics
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:12
  • 期:3
  • 全文大小:881 KB
  • 参考文献:Aksenov, A., et al. (2014). Detection of Huanglongbing disease using differential mobility spectrometry. Analytical Chemistry, 86, 2481–2488. doi:10.​1021/​ac403469y .CrossRef PubMed
    Barbarossa, L., & Savino, V. (2006). Sensitive and specific digoxigenin-labelled rna probes for routine detection of citrus tristeza virus by dot-blot hybridization. Journal of Phytopathology, 154, 329–335.CrossRef
    Bar-Joseph, M., et al. (2002). The continuous challenge of citrus tristeza virus molecular research. In Paper presented at the Fifteenth IOCV Conference.
    Bar-Joseph, M., et al. (1979). The use of enzyme-linked immunosorbent assay for detection of citrus tristeza virus. Phytopathology, 69, 190–194.CrossRef
    Cambra, M., et al. (2000b). Routine detection of Citrus tristeza virus by direct immunoprinting-ELISA method using specific monoclonal and recombinant antibodies. In Proceedings 14th International Conference of the Organization of Citrus Virologists, Riverside, pp. 34–41.
    Cambra, M., Camarasa, E., Gorris, M. T., Garnsey, S. M., & Carbonell, E. (1991). Comparison of different immunosorbent assays for Citrus tristeza virus (CTV) using CTV-specific monoclonal and polyclonal antibodies. In R. H. Brlansky, R. F. Lee, & L. W. Timmer (Eds.), Proceedings XI International Organization of Citrus Virologist, IOCV, Riverside, CA, pp. 38–45.
    Cambra, M., et al. (2000a). Incidence and epidemiology of Citrus tristeza virus in the Valencian community of Spain. Virus Research, 71, 85–95.CrossRef PubMed
    Cevallos-Cevallos, J. M., Garcia-Torres, R., Etxeberria, E., & Reyes-De-Corcuera, J. I. (2011). GC-MS analysis of headspace and liquid extracts for metabolomic differentiation of citrus Huanglongbing and zinc deficiency in leaves of ‘Valencia’ sweet orange from commercial groves. Phytochemical Analysis, 22, 236–246. doi:10.​1002/​pca.​1271 .CrossRef PubMed
    Chaouch, S., & Noctor, G. (2010). Myo-inositol abolishes salicylic acid-dependent cell death and pathogen defence responses triggered by peroxisomal hydrogen peroxide. New Phytologist, 188, 711–718. doi:10.​1111/​j.​1469-8137.​2010.​03453.​x .CrossRef PubMed
    Cheung, W., et al. (2015). Volatile organic compound (VOC) profiling of Citrus tristeza virus (CTV) infection in Valencia citrus varietals using thermal desorption gas chromatography time of flight mass spectrometry (TD-GC/TOF-MS). Metabolomics, 11(6), 1514–1525.CrossRef
    Clements, R. S, Jr, & Darnell, B. (1980). Myo-inositol content of common foods: development of a high-myo-inositol diet. American Journal of Clinical Nutrition, 33, 1954–1967.PubMed
    Donike, M. (1969). N-Methyl-N-trimethylsilyl-trifluoracetamid, ein neues Silylierungsmittel aus der reihe der silylierten amide. Journal of Chromatography A, 42, 103–104.CrossRef
    Donike, M., & Zimmermann, J. (1980). Zur Darstellung von Trimethylsilyl-, Triethylsilyl- und tert. Butyl-dimethylsilyl-enoläthern von Ketosteroiden für gaschromatographische und massen-spektrometrische Untersuchungen. Journal of Chromatography A, 202, 483–486.CrossRef
    Fares, S., Gentner, D. R., Park, J. H., Ormeno, E., Karlik, J., & Goldstein, A. H. (2011). Biogenic emissions from Citrus species in California. Atmospheric Environment, 45, 4557–4568. doi:10.​1016/​j.​atmosenv.​2011.​05.​066 .CrossRef
    Fiehn, O. (2006). Metabolite profiling in arabidopsis. In J. Salinas & J. Sanchez-Serrano (Eds.), Arabidopsis protocols. Methods in molecular biology™ (Vol. 323, pp. 439–447). New York: Humana Press.CrossRef
    Fiehn, O., Kopka, J., Doermann, P., Altmann, T., Trethewey, R. N., & Willmitzer, L. (2000a). Metabolite profiling for plant functional genomics. Nature Biotechnology, 18, 1157–1161. doi:10.​1038/​81137 .CrossRef PubMed
    Fiehn, O., Kopka, J., Trethewey, R. N., & Willmitzer, L. (2000b). Identification of uncommon plant metabolites based on calculation of elemental compositions using gas chromatography and quadrupole mass spectrometry. Analytical Chemistry, 72, 3573–3580. doi:10.​1021/​ac991142i .CrossRef PubMed
    Folimonova, S. Y., et al. (2010). Infection with strains of Citrus tristeza virus does not exclude superinfection by other strains of the virus. Journal of Virology, 84, 1314–1325. doi:10.​1128/​JVI.​02075-09 .PubMedCentral CrossRef PubMed
    Futch, S. H., & Brlansky, R. H. (2004). Field Diagnosis of Citrus Tristeza Virus. Citrus Industry Magazine, 85, 22–23.
    Gandia, M., et al. (2007). Transcriptional response of Citrus aurantifolia to infection by Citrus tristeza virus. Virology, 367, 298–306. doi:10.​1016/​j.​virol.​2007.​05.​025 .CrossRef PubMed
    Hijaz, F., & Killiny, N. (2014). Collection and chemical composition of phloem sap from Citrus sinensis L. Osbeck (sweet orange). PLoS One, 9, e101830. doi:10.​1371/​journal.​pone.​0101830 .PubMedCentral CrossRef PubMed
    Hijaz, F. M., Manthey, J. A., Folimonova, S. Y., Davis, C. L., Jones, S. E., & Reyes-De-Corcuera, J. I. (2013). An HPLC-MS characterization of the changes in sweet orange leaf metabolite profile following infection by the bacterial pathogen Candidatus Liberibacter asiaticus. PLoS One, 8, e79485. doi:10.​1371/​journal.​pone.​0079485 .PubMedCentral CrossRef PubMed
    Khakimov, B., Motawia, M. S., Bak, S., & Engelsen, S. B. (2013). The use of trimethylsilyl cyanide derivatization for robust and broad-spectrum high-throughput gas chromatography-mass spectrometry based metabolomics. Analytical and Bioanalytical Chemistry, 405, 9193–9205. doi:10.​1007/​s00216-013-7341-z .CrossRef PubMed
    Kind, T., et al. (2009). FiehnLib: Mass spectral and retention index libraries for metabolomics based on quadrupole and time-of-flight gas chromatography/mass spectrometry. Analytical Chemistry, 81, 10038–10048.PubMedCentral CrossRef PubMed
    Kitajima, E. W., Silva, D. M., Oliveira, A. R., Muller, G. W., Costa, A. S. (1964). Electron microscopical investigations of tristeza. In Proceedings of the 3rd conference of the international organization of citrus virologists, 1–9.
    Kushalappa, A. C., Lui, L. H., Chen, C. R., & Lee, B. (2002). Volatile fingerprinting (SPME-GC-FID) to detect and discriminate diseases of potato tubers. Plant Disease, 86, 131–137. doi:10.​1094/​Pdis.​2002.​86.​2.​131 .CrossRef
    Leiss, K. A., Maltese, F., Choi, Y. H., Verpoorte, R., & Klinkhamer, P. G. (2009). Identification of chlorogenic acid as a resistance factor for thrips in chrysanthemum. Plant Physiology, 150, 1567–1575. doi:10.​1104/​pp.​109.​138131 .PubMedCentral CrossRef PubMed
    Liu, G., Dong, X., Liu, L., Wu, L., Peng, S., & Jiang, C. (2015). Metabolic profiling reveals altered pattern of central metabolism in navel orange plants as a result of boron deficiency. Physiologia Plantarum, 153, 513–524. doi:10.​1111/​ppl.​12279 .CrossRef PubMed
    Mann, R. S., et al. (2012). Induced release of a plant-defense volatile ‘deceptively’ attracts insect vectors to plants infected with a bacterial pathogen. PLoS Pathogens, 8, e1002610. doi:10.​1371/​journal.​ppat.​1002610 .PubMedCentral CrossRef PubMed
    Meijer, H. J., & Munnik, T. (2003). Phospholipid-based signaling in plants. Annual Review of Plant Biology, 54, 265–306. doi:10.​1146/​annurev.​arplant.​54.​031902.​134748 .CrossRef PubMed
    Moreno, P., Ambros, S., Albiach-Marti, M. R., Guerri, J., & Pena, L. (2008). Citrus tristeza virus: a pathogen that changed the course of the citrus industry. Molecular Plant Pathology, 9, 251–268. doi:10.​1111/​j.​1364-3703.​2007.​00455.​x .CrossRef PubMed
    Narvaez, G., Skander, B. S., Ayllon, M. A., Rubio, L., Guerri, J., & Moreno, P. (2000). A new procedure to differentiate citrus tristeza virus isolates by hybridisation with digoxigenin-labelled cDNA probes. Journal of Virological Methods, 85, 83–92.CrossRef PubMed
    Nolasco, G., de Blas, C., Torres, V., & Ponz, F. (1993). A method combining immunocapture and PCR amplification in a microtiter plate for the detection of plant viruses and subviral pathogens. Journal of Virological Methods, 45, 201–218.CrossRef PubMed
    Olmos, A., Cambra, M., Esteban, O., Gorris, M. T., & Terrada, E. (1999). New device and method for capture, reverse transcription and nested PCR in a single closed-tube. Nucleic Acids Research, 27, 1564–1565.PubMedCentral CrossRef PubMed
    Perez, J. L., Jayaprakasha, G. K., Yoo, K. S., & Patil, B. S. (2008). Development of a method for the quantification of D-glucaric acid in different varieties of grapefruits by high-performance liquid chromatography and mass spectra. Journal of Chromatography A, 1190, 394–397. doi:10.​1016/​j.​chroma.​2008.​03.​026 .CrossRef PubMed
    Roman, M. P., et al. (2004). Sudden death of citrus in Brazil: A graft-transmissible bud union disease. Plant Disease, 88, 453–467. doi:10.​1094/​Pdis.​2004.​88.​5.​453 .CrossRef
    Rosner, A., & Bar-Joseph, M. (1984). Diversity of citrus tristeza virus strains indicated by hybridization with cloned cDNA sequences. Virology, 139, 189–193.CrossRef PubMed
    Sankaran, S., Mishra, A., Ehsani, R., & Davis, C. (2010). A review of advanced techniques for detecting plant diseases. Computers and Electronics in Agriculture, 72, 1–13. doi:10.​1016/​j.​compag.​2010.​02.​007 .CrossRef
    Tsuchizaki, T., Sasaki, A., & Saito, Y. (1978). Purification of citrus tristeza virus from diseased citrus fruits and the detection of the virus in citrus tissues by fluorescent antibody techniques. Phytopathology, 68, 139–142.CrossRef
    Vela, C., et al. (1986). Production and characterization of monoclonal-antibodies specific for Citrus tristeza virus and their use for diagnosis. Journal of General Virology, 67, 91–96. doi:10.​1099/​0022-1317-67-1-91 .CrossRef
    Westerhuis, J. A., et al. (2008). Assessment of PLSDA cross validation. Metabolomics, 4, 81–89. doi:10.​1007/​s11306-007-0099-6 .CrossRef
  • 作者单位:Alberto Pasamontes (1)
    William H. K. Cheung (1)
    Jason Simmons (1)
    Alexander A. Aksenov (1)
    Daniel J. Peirano (1)
    Elizabeth E. Grafton-Cardwell (2)
    Therese Kapaun (2)
    Abhaya M. Dandekar (3)
    Oliver Fiehn (4)
    Cristina E. Davis (1)

    1. Department of Mechanical and Aerospace Engineering, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
    2. University of California, Lindcove Research and Extension Center (LREC), 22963 Carson Avenue, Exeter, CA, 93221, USA
    3. Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
    4. UC Davis Genome Center-Metabolomics, University of California, Davis, 451 Health Sciences Drive, Davis, CA, 95616, USA
  • 刊物主题:Biochemistry, general; Molecular Medicine; Cell Biology; Developmental Biology; Biomedicine general;
  • 出版者:Springer US
  • ISSN:1573-3890
文摘
Citrus tristeza virus (CTV) (genus Closterovirus) is a plant pathogen which infects economically important citrus crops, resulting in devastating crop losses worldwide. In this study, we analyzed leaf metabolite extracts from six sweet orange varieties and a mandarin × tangor cross infected with CTV collected at the Lindcove Research and Extension Center (LREC; Exeter, CA). In order to analyze low volatility small molecules, the extracts of leaf metabolites were derivatized by N-methyl-N-trimethylsilyl-trifluoracetamide (MSTFA). Chemical analysis was performed with gas chromatography/mass spectrometry (GC/MS) to assess metabolite changes induced by CTV infection. Principal Component Analysis (PCA) and Hotelling’s T2 were used to identify outliers within the set of samples. Partial Least Square Discriminant Analysis (PLS-DA) was applied as a regression method. A cross-validation strategy was repeated 300 times to minimize possible bias in the model selection. Afterwards, a representative model was built with a sensitivity of 0.66 and a specificity of 0.71. The metabolites which had the strongest contribution to differentiate between healthy and CTV-infected were found to be mostly saccharides and their derivatives such as inositol, d-fructose, glucaric and quinic acid. These metabolites are known to be endogenously produced by plants, possess important biological functions and often found to be differentially regulated in disease states, maturation processes, and metabolic responses. Based on the information found in this study, a method may be available that can identify CTV infected plants for removal and halt the spread of the virus. Keywords Citrus tristeza virus (CTV) Feature selection Cross-validation Partial least square discriminant analysis (PLSDA) Mass spectrometry Gas chromatography Biomarker discovery

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700