Evaluating the impacts of cumulus, land surface and ocean surface schemes on summertime rainfall simulations over East-to-southeast Asia and the western north Pacific by RegCM4
详细信息    查看全文
  • 作者:Yu-Bin Li ; Chi-Yung Tam ; Wan-Ru Huang ; Kevin K. W. Cheung ; Zhiqiu Gao
  • 关键词:Regional climate model ; Precipitation ; Cumulus scheme ; Land surface model ; Ocean surface scheme
  • 刊名:Climate Dynamics
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:46
  • 期:7-8
  • 页码:2487-2505
  • 全文大小:11,211 KB
  • 参考文献:Adeniyi MO (2014) Sensitivity of different convection schemes in RegCM4.0 for simulation of precipitation during the Septembers of 1989 and 1998 over West Africa. Theor Appl Climatol 115:305–332CrossRef
    An KH, Tam CY, Park CK (2009) Improving the northeast Asian monsoon simulation: remote impact of tropical heating bias correction. Mon Weather Rev 137:797–803CrossRef
    Anthes RA, Hsie EY, Kuo YH (1987) Description of the Penn State/NCAR Mesoscale Model Version 4 (MM4). National Center for Atmospheric Research Tech Note TN-282+STR, NCAR, Boulder, CO
    Arakawa A (2004) The cumulus parameterization problem: past, present, and future. J Clim 17:2493–2525CrossRef
    Arakawa A, Schubert WH (1974) Interaction of a cumulus cloud ensemble with the large scale environment. Part I. J Atmos Sci 31:674–701CrossRef
    Au-Yeung AYM, Chan JCL (2012) Potential use of a regional climate model in seasonal tropical cyclone activity predictions in the Western North Pacific. Clim Dyn 39:783–794CrossRef
    Brunke MA, Fairall CW, Zeng X, Eymard L, Curry JA (2003) Which bulk aerodynamic algorithms are least problematic in computing ocean surface turbulent fluxes? J Clim 16:619–635CrossRef
    Chen F, Avissar R (1994) Impact of land-surface moisture variability on local shallow convective cumulus and precipitation in large-scale models. J Appl Meteor 33:1382–1401CrossRef
    Chow KC, Chan JCL, Pal JS, Giorgi F (2006) Convection suppression criteria applied to the MIT cumulus parameterization scheme for simulating the Asian summer monsoon. Geophys Res Lett 33:L24709CrossRef
    Dai Y, Zeng X, Dickinson RE, Bonan GB, Bosilovich MG, Denning AS, Dirmeyer PA, Houser PR, Niu G, Oleson KW, Schlosser CA, Yang ZL (2003) The common land model. Bull Amer Meteor Soc 84:1013–1023CrossRef
    Davis N, Bowden J, Semazzi F, Xie L, Önol B (2009) Customization of RegCM3 regional climate model for eastern Africa and a tropical Indian Ocean domain. J Clim 22:3595–3616CrossRef
    Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Hólm EV, Isaksen L, Kållberg P, Köhler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette JJ, Park BK, Peubey C, de Rosnay P, Tavolato C, Thépaut JN, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597CrossRef
    Dickinson RE, Henderson-Sellers A, Kennedy PJ (1993) Biosphere–atmosphere transfer scheme (BATS) version 1e as coupled to the NCAR community climate model. NCAR Tech. Note, NCAR/TN-387+STR
    Diro GT, Rausher SA, Giorgi F, Tompkins AM (2012) Sensitivity of seasonal climate and diurnal precipitation over Central America to land and sea surface schemes in RegCM4. Clim Res 52:31–48CrossRef
    Donelan M, Donelan FW, Smith SD, Anderson RJ (1993) On the dependence of sea surface roughness on wave development. J Phys Oceanogr 23:2143–2149CrossRef
    Dudhia J, Gill D, Manning K, Wang W, Bruyere C, Kelly S, Lackey K (2004) PSU/NCAR mesoscale modeling system tutorial class notes and user’s guide: MM5 modeling system version 3, NCAR
    Dyer AJ (1974) A review of flux-profile relationships. Boundary Layer Meteorol 7:363–372CrossRef
    Emanuel KA (1991) A scheme for representing cumulus convection in large-scale models. J Atmos Sci 48:2313–2335CrossRef
    Emanuel KA, Zivkovic-Rothman M (1999) Development and evaluation of a convection scheme for use in climate models. J Atmos Sci 56:1766–1782CrossRef
    Fairall CW, Bradley EF, Rogers DP, Edson JB, Young GS (1996) Bulk parameterization of air–sea fluxes for TOGACOARE. J Geophys Res 101:3747–3764CrossRef
    Fekete BM, Vörösmarty CJ, Roads JO, Willmott CJ (2004) Uncertainties in precipitation and their impacts on runoff estimates. J Clim 17:294–304CrossRef
    Fritsch JM, Chappell CF (1980) Numerical prediction of convectively driven mesoscale pressure systems. Part I: convective parameterization. J Atmos Sci 37:722–1733
    Gao XJ, Zhao ZC, Ding YH, Huang RH, Giorgi F (2001) Climate change due to greenhouse effects in China as simulated by a regional climate model. Adv Atmos Sci 18:1224–1230CrossRef
    Gao XJ, Xu Y, Zhao ZC, Pal JS, Giorgi F (2006a) On the role of resolution and topography in the simulation of East Asia precipitation. Theor Appl Climatol 86:173–185CrossRef
    Gao Z, Wang Q, Wang S (2006b) An alternative approach to sea surface aerodynamic roughness. J Geophys Res 111:D22108CrossRef
    Gao XJ, Shi Y, Giorgi F (2011) A high resolution simulation of climate change over China. Sci China D Earth Sci 54:462–472CrossRef
    Gao XJ, Wang ML, Giorgi F (2013) Climate change over China in the 21st century as simulated by BCC_CSM1.1-RegCM4.0. Atmos Ocean Sci Lett 6:381–386CrossRef
    Garratt JR (1992) The atmospheric boundary layer. Cambridge University Press, Cambridge, p 316
    Gianotti RL, Zhang D, Eltahir EAB (2012) Assessment of the regional climate model version 3 over the maritime continent using different cumulus parameterization and land surface schemes. J Clim 25:638–656CrossRef
    Giorgi F, Marinucci MR, Bates GT, De Canio G (1993) Development of a second-generation regional climate model (RegCM2). Part II: convective processes and assimilation of lateral boundary conditions. Mon Weather Rev 121:2814–2832CrossRef
    Giorgi F, Coppola E, Solmon F, Mariotti L, Sylla MB, Bi X, Elguindi N, Diro GT, Nairl V, Giuliani G, Turuncoglu UU, Cozzini S, Güttler I, O’Brien TA, Tawfik AB, Shalaby A, Zakey AS, Steiner AL, Stordal F, Sloan LC, Brankovic C (2012) RegCM4: model description and preliminary test over multiple CORDEX domains. Clim Res 52:7–29CrossRef
    Grell GA (1993) Prognostic evaluation of assumptions used by cumulus parameterizations. Mon Weather Rev 121:764–787CrossRef
    Holtslag AAM, de Bruijn EIF, Pan HL (1990) A high resolution air mass transformation model for short-range weather forecasting. Mon Wea Rev 118:1561–1575CrossRef
    Huang WR, Chan JCL (2014) Dynamical downscaling forecasts of Western North Pacific tropical cyclone genesis and landfall. Clim Dyn 42:2227–2237CrossRef
    Huang WR, Chan JCL, Wang SY (2010) A planetary-scale land–sea breeze circulation in East Asia and the western north Pacific. Q J R Meteorol Soc 136:1543–1553CrossRef
    Huang WR, Chan JCL, Au-Yeung AYM (2013) Regional climate simulations of summer diurnal rainfall variations over East Asia and Southeast China. Clim Dyn 40:1625–1642CrossRef
    Im ES, Ahn JB, Remedio AR, Kwon WT (2008) Sensitivity of the regional climate of East/Southeast Asia to convective parameterizations in the RegCM3 modelling system. Part 1: focus on the Korean peninsula. Int J Climatol 28:1861–1877CrossRef
    Janssen JAM (1997) Does wind stress depend on sea-state or not?—a statistical error analysis of Hexmax data. Bound Layer Meteorol 83:479–503CrossRef
    Jones ISF, Toba Y (2001) Historical drag expressions. In: Toba Y, Smith SD, Ebuchi N (eds) Wind stress over the Ocean. Cambridge Univ. Press, New York, pp 52–53CrossRef
    Ju LX, Wang HJ, Jiang DB (2007) Simulation of the last glacial maximum climate over East Asia with a regional climate model nested in a general circulation model. Palaeogeogr Palaeoclimatol Palaeoecol 248:376–390CrossRef
    Kang S, Im ES, Ahn JB (2014) The impact of two land-surface schemes on the characteristics of summer precipitation over East Asia from the RegCM4 simulations. Int J Climatol. doi:10.​1002/​joc.​3998
    Kiehl JT, Hack JJ, Bonan GB, Boville BA, Breigleb BP, Williamson DL, Rasch PJ (1996) Description of the NCAR community climate model (CCM3), NCAR Tech. Note, NCAR/TN-420+STR
    Li T, Zhou GQ (2010) Preliminary results of a regional air–sea coupled model over East Asia. Chin Sci Bull 55:2295–2305CrossRef
    Li Y, Gao Z, Lenschow DH, Chen F (2010) An improved approach for parameterizing surface-layer turbulent transfer coefficients in numerical models. Bound Layer Meteorol 137:153–165CrossRef
    Li W, Feng J, Chen S, Wang L (2012) Relationship between wintertime precipitation in South China and air–sea heat fluxes. Atmos Sci Lett 13:113–119CrossRef
    Li Y, Gao Z, Li D, Wang L, Wang H (2014) An improved non-iterative surface layer flux scheme for atmospheric stable stratification conditions. Geosci Model Dev 7:515–529CrossRef
    Molinari J, Dudek M (1992) Parameterization of convective precipitation in mesoscale numerical models: a critical review. Mon Weather Rev 120:326–344CrossRef
    Oost WA, Komen GJ, Jacobs CMJ, van Oort C (2002) New evidence for a relation between wind stress and wave age from measurements during ASGAMAGE. Bound Layer Meteorol 103:409–438CrossRef
    Osborn TJ, Hulme M (1997) Development of a relationship between station and grid-box rainday frequencies for climate model evaluation. J Clim 10:1885–1908CrossRef
    Pal JS, Giorgi F, Bi X, Elguindi N, Solmon F, Gao X, Rauscher SA, Francisco R, Zakey A, Winter J, Ashfaq M, Syed FS, Bell JL, Diffenbaugh NS, Karmacharya J, Konare A, Martinez D, Da Rocha RP, Sloan LC, Steiner AL (2007) Reglonal climate modeling for the developing world: the ICTP RegCM3 and RegCNET. Bull Am Meteor Soc 88:1395–1409CrossRef
    Powell MD, Vickery PJ, Reinhold TA (2003) Reduced drag coefficient for high wind speeds in tropical cyclones. Nature 422:279–283CrossRef
    Seth A, Giorgi F (1998) The effects of domain choice in summer precipitation simulation and sensitivity in a regional climate model. J Clim 11:2698–2712CrossRef
    Simpson JS, Kummerow C, Tao WK, Adler RF (1996) On the tropical rainfall measuring mission (TRMM). Meteorol Atmos Phys 60:19–36CrossRef
    Steiner AL, Pal JS, Giorgi F, Dickinson RE, Chameides WL (2005) The coupling of the common land model (CLM0) to a regional climate model (RegCM). Theor Appl Climatol 82:225–243CrossRef
    Steiner AL, Pal JS, Rauscher SA, Bell JL, Diffenbaugh SN, Boone A, Sloan LC, Giorgi F (2009) Land surface coupling in regional climate simulations of the West African monsoon. Clim Dyn 33:869–892CrossRef
    Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res 106:7183–7192CrossRef
    Turuncoglu UU, Giuliani G, Elguindi N, Giorgi F (2013) Modelling the Caspian Sea and its catchment area using a coupled regional atmosphere-ocean model (RegCM4-ROMS): model design and preliminary results. Geosci Model Dev 6:283–299CrossRef
    Uppala S, Dee D, Kobayashi S, Berrisford P, Simmons A (2008) Towards a climate data assimilation system: status update of ERA-Interim. ECMWF Newsl 115:12–18
    Wang Y, Tao WK, Simpson J (1996) The impact of Ocean surface fluxes on a TOGA COARE convective system. Mon Weather Rev 124:2753–2763CrossRef
    Wang Y, Tao WK, Simpson J, Lang S (2003) The sensitivity of tropical squall lines to surface fluxes: three-dimensional cloud-resolving model simulations. Q J Roy Meteor Soc 129:987–1006CrossRef
    Zeng X, Zhao M, Dickinson RE (1998) Intercomparison of bulk aerodynamic algorithms for the computation of sea surface fluxes using TOGA COARE and TAO data. J Clim 11:2628–2644CrossRef
    Zhu J, Shukla J (2013) The role of air–sea coupling in seasonal prediction of Asia-Pacific summer monsoon rainfall. J Clim 26:5689–5697CrossRef
    Zou L, Zhou T (2013) Can a regional ocean-atmosphere coupled model improve the simulation of the interannual variability of the western north Pacific summer monsoon? J Clim 26:2353–2367CrossRef
  • 作者单位:Yu-Bin Li (1) (2)
    Chi-Yung Tam (3)
    Wan-Ru Huang (4)
    Kevin K. W. Cheung (5)
    Zhiqiu Gao (1) (6)

    1. Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, School of Geography and Remote Sensing, Nanjing University of Information Science and Technology, Nanjing, Jiangsu, China
    2. School of Energy and Environment, City University of Hong Kong, Hong Kong, China
    3. Earth System Science Programme, The Chinese University of Hong Kong, Hong Kong, China
    4. Department of Earth Sciences, National Taiwan Normal University, Taipei, Taiwan, ROC
    5. Department of Environmental Sciences, Macquarie University, Sydney, Australia
    6. State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Earth sciences
    Geophysics and Geodesy
    Meteorology and Climatology
    Oceanography
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-0894
文摘
This study evaluates the sensitivity of summertime rainfall simulations over East-to-southeast Asia and the western north Pacific in the regional climate model version 4 (RegCM4) to cumulus (including Grell with Arakawa–Schubert type closure, Grell with Fritsch–Chappell type closure, and Emanuel), land surface (Biosphere–atmosphere transfer scheme or BATS, and the community land model or CLM) and ocean surface (referred to as Zeng1, Zeng2 and BATS1e in the model) schemes by running the model with different combinations of these parameterization packages. For each of these experiments, ensemble integration of the model was carried out in the extended boreal summer of May–October from 1998 to 2007. The simulated spatial distribution, intensity and inter-annual variation of the precipitation, latent heat flux, position of the subtropical high and tropical cyclone genesis patterns from these numerical experiments were analyzed. Examinations show that the combination of Emanuel, CLM and Zeng2 (E-C-Z2) yields the best overall results, consistent with the fact that physical mechanisms considered in E-C-Z2 tend to be more comprehensive in comparison with the others. Additionally, the rainfall quantity is found very sensitive to sea surface roughness length, and the reduction of the roughness length constant (from 2 × 10−4 to 5 × 10−5 m) in our modified BATS1e mitigates the drastic overestimation of latent heat flux and rainfall, and is therefore preferable to the default value for simulations in the western north Pacific region in RegCM4.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700