Photoconductivities in monocrystalline layered V2O5 nanowires grown by physical vapor deposition
详细信息    查看全文
  • 作者:Ruei-San Chen (5)
    Wen-Chun Wang (6)
    Ching-Hsiang Chan (6)
    Hung-Pin Hsu (5)
    Li-Chia Tien (6)
    Yu-Jyun Chen (6)
  • 关键词:Vanadium pentoxide ; Nanowire ; Photoconductivity ; Physical vapor deposition ; Normalized gain
  • 刊名:Nanoscale Research Letters
  • 出版年:2013
  • 出版时间:December 2013
  • 年:2013
  • 卷:8
  • 期:1
  • 全文大小:725 KB
  • 参考文献:1. Beke S: A review of the growth of V 2 O 5 films from 1885 to 2010. / Thin Solid Films 2011, 519:1761. CrossRef
    2. Zhai T, Liu H, Li H, Fang X, Liao M, Li L, Zhou H, Koide Y, Bando Y, Golberg D: Centimeter-long V 2 O 5 nanowires: from synthesis to field-emission, electrochemical, electrical transport, and photoconductive properties. / Adv Mater 2010, 22:2547. CrossRef
    3. Wu MC, Lee CS: Field emission of vertically aligned V 2 O 5 nanowires on an ITO surface prepared with gaseous transport. / J Solid State Chem 2009, 182:2285. CrossRef
    4. Chen W, Zhou C, Mai L, Liu Y, Qi Y, Dai Y: Field emission from V 2 O 5 鈰?/strong> n H 2 O nanorod arrays. / J Phys Chem C 2008, 112:2262. CrossRef
    5. Dewangan K, Sinha NN, Chavan PG, Sharma PK, Pandey AC, More MA, Joag DS, Munichandraiah N, Gajbhiye NS: Synthesis and characterization of self-assembled nanofiber-bundles of V 2 O 5 : their electrochemical and field emission properties. / Nanoscale 2012, 4:645. CrossRef
    6. Kim GT, Muster J, Krstic V, Park YW, Roth S, Burghard M: Field-effect transistor made of individual V 2 O 5 nanofibers. / Appl Phys Lett 2000, 76:1875. CrossRef
    7. Myung S, Lee M, Kim GT, Ha JS, Hong S: Large-scale 鈥渟urface-programmed assembly鈥?of pristine vanadium oxide nanowire-based devices. / Adv Mater 2005, 17:2361. CrossRef
    8. Vieira NCS, Avansi W, Figueiredo A, Ribeiro C, Mastelaro VR, Guimares FEG: Ion-sensing properties of 1D vanadium pentoxide nanostructures. / Nanoscale Res Lett 2012, 7:310. CrossRef
    9. Raible I, Burghard M, Schlecht U, Yasuda A, Vossmeyer T: V 2 O 5 nanofibres: novel gas sensors with extremely high sensitivity and selectivity to amines. / Sens Actuators B 2005, 106:730. CrossRef
    10. Yu HY, Kang BH, Pi UH, Park CW, Choi SY, Kim GT: V 2 O 5 nanowire-based nanoelectronic devices for helium detection. / Appl Phys Lett 2005, 86:253102. CrossRef
    11. Wang Y, Cao G: Synthesis and enhanced intercalation properties of nanostructured vanadium oxides. / Chem Mater 2006, 18:2787. CrossRef
    12. Li G, Pang S, Jiang L, Guo Z, Zhang Z: Environmentally friendly chemical route to vanadium oxide single-crystalline nanobelts as a cathode material for lithium-ion batteries. / J Phys Chem B 2006, 110:9383. CrossRef
    13. Mohan VM, Hu B, Qiu W, Chen W: Synthesis, structural, and electrochemical performance of V 2 O 5 nanotubes as cathode material for lithium battery. / J Appl Electrochem 2009, 39:2001. CrossRef
    14. Mai L, Dong F, Xu X, Luo Y, An Q, Zhao Y, Pan J, Yang J: Cucumber-like V 2 O 5 /poly(3,4-ethylenedioxythiophene)&MnO 2 nanowires with enhanced electrochemical cyclability. / Nano Lett 2013, 13:740. CrossRef
    15. Frese KW Jr: Simple method for estimating energy levels of solids. / J Vac Sci Technol 1979, 16:1042. CrossRef
    16. Van Hieu N, Lichtman D: Bandgap radiation induced photodesorption from V 2 O 5 powder and vanadium oxide surfaces. / J Vac Sci Technol 1981, 18:49. CrossRef
    17. Zhou B, He D: Raman spectrum of vanadium pentoxide from density-functional perturbation theory. / J Raman Spectrosc 2008, 39:1475. CrossRef
    18. Kim BH, Kim A, Oh SY, Bae SS, Yun YJ, Yu HY: Energy gap modulation in V 2 O 5 nanowires by gas adsorption. / Appl Phys Lett 2008, 93:233101. CrossRef
    19. Tamang R, Varghese B, Tok ES, Mhaisalkar S, Sow CH: Sub-bandgap energy photoresponse of individual V 2 O 5 nanowires. / Nanosci Nanotechnol Lett 2012, 4:716. CrossRef
    20. Yan B, Liao L, You Y, Xu X, Zheng Z, Shen Z, Ma J, Tong L, Yu T: Single-crystalline V 2 O 5 ultralong nanoribbon waveguides. / Adv Mater 2009, 21:2436. CrossRef
    21. Lu J, Hu M, Tian Y, Guo C, Wang C, Guo S, Liu Q: Fast visible light photoelectric switch based on ultralong single crystalline V 2 O 5 nanobelt. / Opt Exp 2012, 20:6974. CrossRef
    22. Livage J: Vanadium pentoxide gels. / Chem Mater 1991, 3:578. CrossRef
    23. Muster J, Kim GT, Krstic V, Park JG, Park YW, Roth S, Burghard M: Electrical transport through individual vanadium pentoxide nanowires. / Adv Mater 2000, 12:420. CrossRef
    24. Shen WJ, Sun KW, Lee CS: Electrical characterization and Raman spectroscopy of individual vanadium pentoxide nanowire. / J Nanopart Res 2011, 13:4929. CrossRef
    25. Tien LC, Chen YJ: Effect of surface roughness on nucleation and growth of vanadium pentoxide nanowires. / Appl Surf Sci 2012, 258:3584. CrossRef
    26. Tien LC, Chen YJ: Influence of growth ambient on the surface and structural properties of vanadium oxide nanorods. / Appl Surf Sci 2013, 274:64. CrossRef
    27. Chou JY, Lensch-Falk JL, Hemesath ER, Lauhon LJ: Vanadium oxide nanowire phase and orientation analyzed by Raman spectroscopy. / J Appl Phys 2009, 105:034310. CrossRef
    28. Abello L, Husson E, Repelin Y, Lucazeau G: Vibrational spectra and valence force field of crystalline V 2 O 5 . / Spectrochim Acta 1983, 39A:641.
    29. Bhattacharya P: / Semiconductor Optoelectronic Devices, Volume 8. 2nd edition. New Jersey: Prentice-Hall Inc; 1997:346鈥?51.
    30. Fang X, Bando Y, Liao M, Gautam UK, Zhi C, Dierre B, Liu B, Zhai T, Sekiguchi T, Koide Y, Golberg D: Single-crystalline ZnS nanobelts as ultraviolet-light sensors. / Adv Mater 2009, 21:2034. CrossRef
    31. Fang X, Xiong S, Zhai T, Bando Y, Liao M, Gautam UK, Koide Y, Zhang X, Qian Y, Golberg D: High-performance blue/ultraviolet-light-sensitive ZnSe-nanobelt photodetectors. / Adv Mater 2009, 21:5016. CrossRef
    32. Chen M, Hu L, Xu J, Liao M, Wu L, Fang X: ZnO hollow-sphere nanofilm-based high-performance and low-cost photodetector. / Small 2011, 7:2449.
    33. Fang X, Hu L, Huo K, Gao B, Zhao L, Liao M, Chu PK, Bando Y, Golberg D: New ultraviolet photodetector based on individual Nb 2 O 5 nanobelts. / Adv Funct Mater 2011, 21:3907. CrossRef
    34. Chen RS, Wang SW, Lan ZH, Tsai JTH, Wu CT, Chen LC, Chen KH, Huang YS, Chen CC: On-chip fabrication of well-aligned and contact-barrier-free GaN nanobridge devices with ultrahigh photocurrent responsivity. / Small 2008, 4:925. CrossRef
    35. Hu L, Yan J, Liao M, Xiang H, Gong X, Zhang L, Fang X: An optimized ultraviolet-A light photodetector with wide-range photoresponse based on ZnS/ZnO biaxial nanobelt. / Adv Mater 2012, 24:2305. CrossRef
    36. Huang K, Zhang Q, Yang F, He D: Ultraviolet photoconductance of a single hexagonal WO 3 nanowire. / Nano Res 2010, 3:281. CrossRef
    37. Soci C, Zhang A, Xiang B, Dayeh SA, Aplin DPR, Park J, Bao XY, Lo YH, Wang D: ZnO nanowire UV photodetectors with high internal gain. / Nano Lett 2007, 7:1003. CrossRef
    38. Hu L, Yan J, Liao M, Wu L, Fang X: Ultrahigh external quantum efficiency from thin SnO2 nanowire ultraviolet photodetectors. / Small 2011, 7:1012. CrossRef
    39. Kounavis P, Vomvas A, Mytilineou E, Roilos M, Murawski L: Thermopower, conductivity and the Hall effect in V 2 O 5 gels. / J Phys C Solid State Phys 1988, 21:967. CrossRef
    40. Stevens KS, Kinniburgh M, Beresford R: Photoconductive ultraviolet sensor using Mg-doped GaN on Si(111). / Appl Phys Lett 1995, 66:3518. CrossRef
    41. Binet F, Duboz JY, Rosencher E, Scholz F, Harle V: Mechanisms of recombination in GaN photodetectors. / Appl Phys Lett 1996, 69:1202. CrossRef
    42. Bube RH: / Photoconductivity of Solids. 2nd edition. New York: John Wiley & Sons, Inc; 1960.
    43. Zhai T, Fang X, Liao M, Xu X, Zeng H, Yoshio B, Golberg D: A comprehensive review of one-dimensional metal-oxide nanostructure photodetectors. / Sensors 2009, 9:6504. CrossRef
    44. Lin CH, Chen RS, Chen TT, Chen HY, Chen YF, Chen KH, Chen LC: High photocurrent gain in SnO 2 nanowires. / Appl Phys Lett 2008, 93:112115. CrossRef
    45. Chen RS, Chen CA, Tsai HY, Wang WC, Huang YS: Photoconduction properties in single-crystalline titanium dioxide nanorods with ultrahigh normalized gain. / J Phys Chem C 2012, 116:4267. CrossRef
    46. Chen RS, Yang TH, Chen HY, Chen LC, Chen KH, Yang YJ, Su CH, Lin CR: Photoconduction mechanism of oxygen sensitization in InN nanowires. / Nanotechnology 2011, 22:425702. CrossRef
    47. Huang HM, Chen RS, Chen HY, Liu TW, Kuo CC, Chen CP, Hsu HC, Chen LC, Chen KH, Yang YJ: Photoconductivity in single AlN nanowires by subband gap excitation. / Appl Phys Lett 2010, 96:062104. CrossRef
    48. Prades JD, Jimenez-Diaz R, Hernandez-Ramirez F, Fernandez-Romero L, Andreu T, Cirera A, Romano-Rodriguez A, Cornet A, Morante JR, Barth S, Mathur S: Toward a systematic understanding of photodetectors based on individual metal oxide nanowires. / J Phys Chem C 2008, 112:14639. CrossRef
    49. Chen RS, Wang WC, Lu ML, Chen YF, Lin HC, Chen KH, Chen LC: Anomalous quantum efficiency for photoconduction and its power dependence in metal oxide semiconductor nanowires. / Nanoscale 2013, 5:6867. CrossRef
  • 作者单位:Ruei-San Chen (5)
    Wen-Chun Wang (6)
    Ching-Hsiang Chan (6)
    Hung-Pin Hsu (5)
    Li-Chia Tien (6)
    Yu-Jyun Chen (6)

    5. Department of Electronic Engineering, Ming Chi University of Technology, Taishan, Taipei, 243, Taiwan
    6. Department of Materials Science and Engineering, National Dong Hwa University, Shoufeng, Hualien, 974, Taiwan
  • ISSN:1556-276X
文摘
Photoconductivities of monocrystalline vanadium pentoxide (V2O5) nanowires (NWs) with layered orthorhombic structure grown by physical vapor deposition (PVD) have been investigated from the points of view of device and material. Optimal responsivity and gain for single-NW photodetector are at 7,900 A W-1 and 30,000, respectively. Intrinsic photoconduction (PC) efficiency (i.e., normalized gain) of the PVD-grown V2O5 NWs is two orders of magnitude higher than that of the V2O5 counterpart prepared by hydrothermal approach. In addition, bulk and surface-controlled PC mechanisms have been observed respectively by above- and below-bandgap excitations. The coexistence of hole trapping and oxygen sensitization effects in this layered V2O5 nanostructure is proposed, which is different from conventional metal oxide systems, such as ZnO, SnO2, TiO2, and WO3.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700