Prokaryotic assemblages and metagenomes in pelagic zones of the South China Sea
详细信息    查看全文
  • 作者:Ching-Hung Tseng (1) (2) (3)
    Pei-Wen Chiang (2)
    Hung-Chun Lai (2) (4)
    Fuh-Kwo Shiah (5)
    Ting-Chang Hsu (5)
    Yi-Lung Chen (5)
    Liang-Saw Wen (4)
    Chun-Mao Tseng (4)
    Wung-Yang Shieh (4)
    Isaam Saeed (6)
    Saman Halgamuge (6)
    Sen-Lin Tang (1) (2) (4)

    1. Bioinformatics Program
    ; Taiwan International Graduate Program ; Institute of Information Science ; Academia Sinica ; Taipei ; Taiwan
    2. Biodiversity Research Center
    ; Academia Sinica ; Taipei ; Taiwan
    3. Institute of Biomedical Informatics
    ; National Yang-Ming University ; Taipei ; Taiwan
    4. Institute of Oceanography
    ; National Taiwan University ; Taipei ; Taiwan
    5. Research Center for Environmental Changes
    ; Academia Sinica ; Taipei ; Taiwan
    6. Optimisation and Pattern Recognition Research Group
    ; Department of Mechanical Engineering ; Melbourne School of Engineering ; The University of Melbourne ; Victoria ; Australia
  • 关键词:Metagenomics ; Prokaryotic biodiversity ; Ocean
  • 刊名:BMC Genomics
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:16
  • 期:1
  • 全文大小:787 KB
  • 参考文献:1. Sogin, ML, Morrison, HG, Huber, JA, Mark Welch, D, Huse, SM, Neal, PR (2006) Microbial diversity in the deep sea and the underexplored 鈥渞are biosphere鈥? Proc Natl Acad Sci U S A 103: pp. 12115-20 CrossRef
    2. Huber, JA, Mark Welch, DB, Morrison, HG, Huse, SM, Neal, PR, Butterfield, DA (2007) Microbial population structures in the deep marine biosphere. Science 318: pp. 97-100 CrossRef
    3. Venter, JC, Remington, K, Heidelberg, JF, Halpern, AL, Rusch, D, Eisen, JA (2004) Environmental genome shotgun sequencing of the Sargasso Sea. Science 304: pp. 66-74 CrossRef
    4. Rusch, DB, Halpern, AL, Sutton, G, Heidelberg, KB, Williamson, S, Yooseph, S (2007) The Sorcerer II Global Ocean Sampling expedition: northwest Atlantic through eastern tropical Pacific. PLoS Biol 5: pp. e77 CrossRef
    5. DeLong, EF, Preston, CM, Mincer, T, Rich, V, Hallam, SJ, Frigaard, NU (2006) Community genomics among stratified microbial assemblages in the ocean鈥檚 interior. Science 311: pp. 496-503 CrossRef
    6. Gilbert, JA, Field, D, Swift, P, Newbold, L, Oliver, A, Smyth, T (2009) The seasonal structure of microbial communities in the Western English Channel. Environ Microbiol 11: pp. 3132-9 CrossRef
    7. Kirchman, DL, Cottrell, MT, Lovejoy, C (2010) The structure of bacterial communities in the western Arctic Ocean as revealed by pyrosequencing of 16S rRNA genes. Environ Microbiol 12: pp. 1132-43 CrossRef
    8. Alonso-Saez, L, Andersson, A, Heinrich, F, Bertilsson, S (2011) High archaeal diversity in Antarctic circumpolar deep waters. Environ Microbiol Rep 3: pp. 689-97 CrossRef
    9. Teeling, H, Fuchs, BM, Becher, D, Klockow, C, Gardebrecht, A, Bennke, CM (2012) Substrate-controlled succession of marine bacterioplankton populations induced by a phytoplankton bloom. Science 336: pp. 608-11 CrossRef
    10. Gilbert, JA, Steele, JA, Caporaso, JG, Steinbruck, L, Reeder, J, Temperton, B (2012) Defining seasonal marine microbial community dynamics. ISME J 6: pp. 298-308 CrossRef
    11. Galand, PE, Potvin, M, Casamayor, EO, Lovejoy, C (2010) Hydrography shapes bacterial biogeography of the deep Arctic Ocean. ISME J 4: pp. 564-76 CrossRef
    12. Brown, MV, Philip, GK, Bunge, JA, Smith, MC, Bissett, A, Lauro, FM (2009) Microbial community structure in the North Pacific ocean. ISME J 3: pp. 1374-86 CrossRef
    13. Konstantinidis, KT, Braff, J, Karl, DM, DeLong, EF (2009) Comparative metagenomic analysis of a microbial community residing at a depth of 4,000 meters at station ALOHA in the North Pacific subtropical gyre. Appl Environ Microbiol 75: pp. 5345-55 CrossRef
    14. Yooseph, S, Nealson, KH, Rusch, DB, McCrow, JP, Dupont, CL, Kim, M (2010) Genomic and functional adaptation in surface ocean planktonic prokaryotes. Nature 468: pp. 60-6 CrossRef
    15. Martin-Cuadrado, AB, Lopez-Garcia, P, Alba, JC, Moreira, D, Monticelli, L, Strittmatter, A (2007) Metagenomics of the deep Mediterranean, a warm bathypelagic habitat. PLoS One 2: pp. e914 CrossRef
    16. Brazelton, WJ, Baross, JA (2009) Abundant transposases encoded by the metagenome of a hydrothermal chimney biofilm. ISME J 3: pp. 1420-4 CrossRef
    17. Eloe, EA, Fadrosh, DW, Novotny, M, Zeigler Allen, L, Kim, M, Lombardo, MJ (2011) Going deeper: metagenome of a hadopelagic microbial community. PLoS One 6: pp. e20388 CrossRef
    18. Wong, GTF, Ku, TL, Mulholland, M, Tseng, CM, Wang, DP (2007) The SouthEast Asian time-series study (SEATS) and the biogeochemistry of the South China Sea - An overview. Deep Sea Res Part II Top Stud Oceanogr 54: pp. 1434-47 CrossRef
    19. Liu, JY (2013) Status of marine biodiversity of the China seas. PLoS One 8: pp. e50719 CrossRef
    20. Liu, HB, Chang, J, Tseng, CM, Wen, LS, Liu, KK (2007) Seasonal variability of picoplankton in the northern South China Sea at the SEATS station. Deep Sea Res Part II Top Stud Oceanogr 54: pp. 1602-16 CrossRef
    21. Moisander, PH, Beinart, RA, Voss, M, Zehr, JP (2008) Diversity and abundance of diazotrophic microorganisms in the South China Sea during intermonsoon. ISME J 2: pp. 954-67 CrossRef
    22. Hu, AY, Jiao, NZ, Zhang, CLL (2011) Community structure and function of planktonic Crenarchaeota: changes with depth in the South China Sea. Microb Ecol 62: pp. 549-63 CrossRef
    23. Jing, H, Xia, X, Suzuki, K, Liu, H (2013) Vertical profiles of bacteria in the tropical and subarctic oceans revealed by pyrosequencing. PLoS One 8: pp. e79423 CrossRef
    24. Tseng, CM, Wong, GTF, Lin, II, Wu, CR, Liu, KK (2005) A unique seasonal pattern in phytoplankton biomass in low-latitude waters in the South China Sea. Geophys Res Lett 32:
    25. Tseng, CM, Wong, GTF, Chou, WC, Lee, BS, Sheu, DD, Liu, KK (2007) Temporal variations in the carbonate system in the upper layer at the SEATS station. Deep Sea Res Part II Top Stud Oceanogr 54: pp. 1448-68 CrossRef
    26. Huse, SM, Dethlefsen, L, Huber, JA, Mark Welch, D, Relman, DA, Sogin, ML (2008) Exploring microbial diversity and taxonomy using SSU rRNA hypervariable tag sequencing. PLoS Genet 4: pp. e1000255 CrossRef
    27. Quast, C, Pruesse, E, Yilmaz, P, Gerken, J, Schweer, T, Yarza, P (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41: pp. D590-6 CrossRef
    28. Schloss, PD, Westcott, SL, Ryabin, T, Hall, JR, Hartmann, M, Hollister, EB (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75: pp. 7537-41 CrossRef
    29. Aller, JY, Kemp, PF (2008) Are Archaea inherently less diverse than Bacteria in the same environments?. FEMS Microbiol Ecol 65: pp. 74-87 CrossRef
    30. Brochier-Armanet, C, Boussau, B, Gribaldo, S, Forterre, P (2008) Mesophilic Crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota. Nat Rev Microbiol 6: pp. 245-52 CrossRef
    31. Zhang, Y, Sintes, E, Chen, MN, Zhang, Y, Dai, MH, Jiao, NZ (2009) Role of mesoscale cyclonic eddies in the distribution and activity of Archaea and Bacteria in the South China Sea. Aquat Microb Ecol 56: pp. 65-79 CrossRef
    32. Kristiansson, E, Hugenholtz, P, Dalevi, D (2009) ShotgunFunctionalizeR: an R-package for functional comparison of metagenomes. Bioinformatics 25: pp. 2737-8 CrossRef
    33. Zwart, G, Crump, BC, Agterveld, MPKV, Hagen, F, Han, SK (2002) Typical freshwater bacteria: an analysis of available 16S rRNA gene sequences from plankton of lakes and rivers. Aquat Microb Ecol 28: pp. 141-55 CrossRef
    34. Andersson, AF, Riemann, L, Bertilsson, S (2010) Pyrosequencing reveals contrasting seasonal dynamics of taxa within Baltic Sea bacterioplankton communities. ISME J 4: pp. 171-81 CrossRef
    35. Alonso-Saez, L, Balague, V, Sa, EL, Sanchez, O, Gonzalez, JM, Pinhassi, J (2007) Seasonality in bacterial diversity in north-west Mediterranean coastal waters: assessment through clone libraries, fingerprinting and FISH. FEMS Microbiol Ecol 60: pp. 98-112 CrossRef
    36. Buchan, A, LeCleir, GR, Gulvik, CA, Gonzalez, JM (2014) Master recyclers: features and functions of bacteria associated with phytoplankton blooms. Nat Rev Microbiol 12: pp. 686-98 CrossRef
    37. Taylor, JD, Cottingham, SD, Billinge, J, Cunliffe, M (2014) Seasonal microbial community dynamics correlate with phytoplankton-derived polysaccharides in surface coastal waters. ISME J 8: pp. 245-8 CrossRef
    38. Pham, VD, Konstantinidis, KT, Palden, T, DeLong, EF (2008) Phylogenetic analyses of ribosomal DNA-containing bacterioplankton genome fragments from a 4000 m vertical profile in the North Pacific Subtropical Gyre. Environ Microbiol 10: pp. 2313-30 CrossRef
    39. Jiao, N, Luo, T, Zhang, R, Yan, W, Lin, Y, Johnson, ZI (2014) Presence of Prochlorococcus in the aphotic waters of the western Pacific Ocean. Biogeosciences 11: pp. 2391-400 CrossRef
    40. Zubkov, MV, Fuchs, BM, Tarran, GA, Burkill, PH, Amann, R (2003) High rate of uptake of organic nitrogen compounds by Prochlorococcus cyanobacteria as a key to their dominance in oligotrophic oceanic waters. Appl Environ Microbiol 69: pp. 1299-304 CrossRef
    41. Vila-Costa, M, Simo, R, Harada, H, Gasol, JM, Slezak, D, Kiene, RP (2006) Dimethylsulfoniopropionate uptake by marine phytoplankton. Science 314: pp. 652-4 CrossRef
    42. Martinez, A, Osburne, MS, Sharma, AK, DeLong, EF, Chisholm, SW (2012) Phosphite utilization by the marine picocyanobacterium Prochlorococcus MIT9301. Environ Microbiol 14: pp. 1363-77 CrossRef
    43. Gomez-Baena, G, Lopez-Lozano, A, Gil-Martinez, J, Lucena, JM, Diez, J, Candau, P (2008) Glucose uptake and its effect on gene expression in prochlorococcus. PLoS One 3: pp. e3416 CrossRef
    44. Montechiaro, F, Hirschmugl, CJ, Raven, JA, Giordano, M (2006) Homeostasis of cell composition during prolonged darkness. Plant Cell Environ 29: pp. 2198-204 CrossRef
    45. Pernthaler, A, Preston, CM, Pernthaler, J, DeLong, EF, Amann, R (2002) Comparison of fluorescently labeled oligonucleotide and polynucleotide probes for the detection of pelagic marine bacteria and archaea. Appl Environ Microbiol 68: pp. 661-7 CrossRef
    46. Karner, MB, DeLong, EF, Karl, DM (2001) Archaeal dominance in the mesopelagic zone of the Pacific Ocean. Nature 409: pp. 507-10 CrossRef
    47. Galand, PE, Casamayor, EO, Kirchman, DL, Potvin, M, Lovejoy, C (2009) Unique archaeal assemblages in the Arctic Ocean unveiled by massively parallel tag sequencing. ISME J 3: pp. 860-9 CrossRef
    48. Fuhrman, JA, Davis, AA (1997) Widespread archaea and novel bacteria from the deep sea as shown by 16S rRNA gene sequences. Mar Ecol Prog Ser 150: pp. 275-85 CrossRef
    49. Massana, R, DeLong, EF, Pedros-Alio, C (2000) A few cosmopolitan phylotypes dominate planktonic archaeal assemblages in widely different oceanic provinces. Appl Environ Microbiol 66: pp. 1777-87 CrossRef
    50. Lopez-Garcia, P, Moreira, D, Lopez-Lopez, A, Rodriguez-Valera, F (2001) A novel haloarchaeal-related lineage is widely distributed in deep oceanic regions. Environ Microbiol 3: pp. 72-8 CrossRef
    51. Aristegui, J, Gasol, JM, Duarte, CM, Herndl, GJ (2009) Microbial oceanography of the dark ocean鈥檚 pelagic realm. Limnol Oceanogr 54: pp. 1501-29 CrossRef
    52. Agogue, H, Lamy, D, Neal, PR, Sogin, ML, Herndl, GJ (2011) Water mass-specificity of bacterial communities in the North Atlantic revealed by massively parallel sequencing. Mol Ecol 20: pp. 258-74 CrossRef
    53. Foerstner, KU, Mering, C, Hooper, SD, Bork, P (2005) Environments shape the nucleotide composition of genomes. EMBO Rep 6: pp. 1208-13 CrossRef
    54. Swan, BK, Tupper, B, Sczyrba, A, Lauro, FM, Martinez-Garcia, M, Gonzalez, JM (2013) Prevalent genome streamlining and latitudinal divergence of planktonic bacteria in the surface ocean. Proc Natl Acad Sci U S A 110: pp. 11463-8 CrossRef
    55. Grzymski, JJ, Dussaq, AM (2012) The significance of nitrogen cost minimization in proteomes of marine microorganisms. ISME J 6: pp. 71-80 CrossRef
    56. Hershberg, R, Petrov, DA (2010) Evidence that mutation is universally biased towards AT in bacteria. PLoS Genet 6: pp. e1001107 CrossRef
    57. Lind, PA, Andersson, DI (2008) Whole-genome mutational biases in bacteria. Proc Natl Acad Sci U S A 105: pp. 17878-83 CrossRef
    58. Glass, JI, Lefkowitz, EJ, Glass, JS, Heiner, CR, Chen, EY, Cassell, GH (2000) The complete sequence of the mucosal pathogen Ureaplasma urealyticum. Nature 407: pp. 757-62 CrossRef
    59. Giovannoni, SJ, Tripp, HJ, Givan, S, Podar, M, Vergin, KL, Baptista, D (2005) Genome streamlining in a cosmopolitan oceanic bacterium. Science 309: pp. 1242-5 CrossRef
    60. Luo, H, Swan, BK, Stepanauskas, R, Hughes, AL, Moran, MA (2014) Evolutionary analysis of a streamlined lineage of surface ocean Roseobacters. ISME J 8: pp. 1428-39 CrossRef
    61. Panzeca, C, Beck, AJ, Tovar-Sanchez, A, Segovia-Zavala, J, Taylor, GT, Gobler, CJ (2009) Distributions of dissolved vitamin B12 and Co in coastal and open-ocean environments. Estuar Coast Shelf Sci 85: pp. 223-30 CrossRef
    62. Sa帽udo-Wilhelmy, SA, Cutter, LS, Durazo, R, Smail, EA, Gomez-Consarnau, L, Webb, EA (2012) Multiple B-vitamin depletion in large areas of the coastal ocean. Proc Natl Acad Sci U S A 109: pp. 14041-5 CrossRef
    63. Sa帽udo-Wilhelmy, SA, G贸mez-Consarnau, L, Suffridge, C, Webb, EA (2014) The role of B vitamins in marine biogeochemistry. Ann Rev Mar Sci 6: pp. 339-67 CrossRef
    64. Rosenberg, D (1999) Environmental pollution around the South China Sea: developing a regional response. Contemp Southeast Asia 21: pp. 119-45 CrossRef
    65. Alonso-Saez, L, Waller, AS, Mende, DR, Bakker, K, Farnelid, H, Yager, PL (2012) Role for urea in nitrification by polar marine Archaea. Proc Natl Acad Sci U S A 109: pp. 17989-94 CrossRef
    66. Tringe, SG, Mering, C, Kobayashi, A, Salamov, AA, Chen, K, Chang, HW (2005) Comparative metagenomics of microbial communities. Science 308: pp. 554-7 CrossRef
    67. Konstantinidis, KT, Tiedje, JM (2004) Trends between gene content and genome size in prokaryotic species with larger genomes. Proc Natl Acad Sci U S A 101: pp. 3160-5 CrossRef
    68. Lauro, FM, McDougald, D, Thomas, T, Williams, TJ, Egan, S, Rice, S (2009) The genomic basis of trophic strategy in marine bacteria. Proc Natl Acad Sci U S A 106: pp. 15527-33 CrossRef
    69. Kim, KH, Bae, JW (2011) Amplification methods bias metagenomic libraries of uncultured single-stranded and double-stranded DNA viruses. Appl Environ Microbiol 77: pp. 7663-8 CrossRef
    70. Weynberg, KD, Wood-Charlson, EM, Suttle, CA, Oppen, MJ (2014) Generating viral metagenomes from the coral holobiont. Front Microbiol 5: pp. 206 CrossRef
    71. Yilmaz, S, Allgaier, M, Hugenholtz, P (2010) Multiple displacement amplification compromises quantitative analysis of metagenomes. Nat Methods 7: pp. 943-4 CrossRef
    72. Marine, R, McCarren, C, Vorrasane, V, Nasko, D, Crowgey, E, Polson, SW (2014) Caught in the middle with multiple displacement amplification: the myth of pooling for avoiding multiple displacement amplification bias in a metagenome. Microbiome 2: pp. 3 CrossRef
    73. Wilson, K Preparation of genomic DNA from bacteria. In: Ausubel, FM, Brent, R, Kingston, RE, Moore, DD, Seidman, JG, Smith, JA, Struhl, K eds. (2001) Current protocols in molecular biology. John Wiley & Sons, Incorporated, New York
    74. Chen, CP, Tseng, CH, Chen, CA, Tang, SL (2011) The dynamics of microbial partnerships in the coral Isopora palifera. ISME J 5: pp. 728-40 CrossRef
    75. Pruesse, E, Peplies, J, Glockner, FO (2012) SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 28: pp. 1823-9 CrossRef
    76. Li, W, Godzik, A (2006) Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22: pp. 1658-9 CrossRef
    77. Camacho, C, Coulouris, G, Avagyan, V, Ma, N, Papadopoulos, J, Bealer, K (2009) BLAST+: architecture and applications. BMC Bioinformatics 10: pp. 421 CrossRef
    78. Dixon, P (2003) VEGAN, a package of R functions for community ecology. J Veg Sci 14: pp. 927-30 CrossRef
    79. Charif, D, Lobry, J SeqinR 1.0-2: a contributed package to the R project for statistical computing devoted to biological sequences retrieval and analysis. In: Bastolla, U, Porto, M, Roman, HE, Vendruscolo, M eds. (2007) Structural approaches to sequence evolution. Springer Berlin Heidelberg, New York, pp. 207-32 CrossRef
    80. Powell, S, Szklarczyk, D, Trachana, K, Roth, A, Kuhn, M, Muller, J (2012) eggNOG v3.0: orthologous groups covering 1133 organisms at 41 different taxonomic ranges. Nucleic Acids Res 40: pp. D284-9 CrossRef
    81. Angly, FE, Willner, D, Prieto-Davo, A, Edwards, RA, Schmieder, R, Vega-Thurber, R (2009) The GAAS metagenomic tool and its estimations of viral and microbial average genome size in four major biomes. PLoS Comput Biol 5: pp. e1000593 CrossRef
    82. Smedile, F, Messina, E, Cono, V, Tsoy, O, Monticelli, LS, Borghini, M (2013) Metagenomic analysis of hadopelagic microbial assemblages thriving at the deepest part of Mediterranean Sea. Matapan-Vavilov Deep. Environ Microbiol 15: pp. 167-82 CrossRef
  • 刊物主题:Life Sciences, general; Microarrays; Proteomics; Animal Genetics and Genomics; Microbial Genetics and Genomics; Plant Genetics & Genomics;
  • 出版者:BioMed Central
  • ISSN:1471-2164
文摘
Background Prokaryotic microbes, the most abundant organisms in the ocean, are remarkably diverse. Despite numerous studies of marine prokaryotes, the zonation of their communities in pelagic zones has been poorly delineated. By exploiting the persistent stratification of the South China Sea (SCS), we performed a 2-year, large spatial scale (10, 100, 1000, and 3000 m) survey, which included a pilot study in 2006 and comprehensive sampling in 2007, to investigate the biological zonation of bacteria and archaea using 16S rRNA tag and shotgun metagenome sequencing. Results Alphaproteobacteria dominated the bacterial community in the surface SCS, where the abundance of Betaproteobacteria was seemingly associated with climatic activity. Gammaproteobacteria thrived in the deep SCS, where a noticeable amount of Cyanobacteria were also detected. Marine Groups II and III Euryarchaeota were predominant in the archaeal communities in the surface and deep SCS, respectively. Bacterial diversity was higher than archaeal diversity at all sampling depths in the SCS, and peaked at mid-depths, agreeing with the diversity pattern found in global water columns. Metagenomic analysis not only showed differential %GC values and genome sizes between the surface and deep SCS, but also demonstrated depth-dependent metabolic potentials, such as cobalamin biosynthesis at 10 m, osmoregulation at 100 m, signal transduction at 1000 m, and plasmid and phage replication at 3000 m. When compared with other oceans, urease at 10 m and both exonuclease and permease at 3000 m were more abundant in the SCS. Finally, enriched genes associated with nutrient assimilation in the sea surface and transposase in the deep-sea metagenomes exemplified the functional zonation in global oceans. Conclusions Prokaryotic communities in the SCS stratified with depth, with maximal bacterial diversity at mid-depth, in accordance with global water columns. The SCS had functional zonation among depths and endemically enriched metabolic potentials at the study site, in contrast to other oceans.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700