Biostimulation of anaerobic BTEX biodegradation under fermentative methanogenic conditions at source-zone groundwater contaminated with a biodiesel blend (B20)
详细信息    查看全文
  • 作者:bora Toledo Ramos (1) <br> Márcio Luis Busi da Silva (2) <br> Helen Simone Chiaranda (1) <br> Pedro J. J. Alvarez (3) <br> Henry Xavier Corseuil (1) <br>
  • 关键词:Acetate ; Biodiesel ; Biostimulation ; BTEX ; Methanogenic ; Natural attenuation
  • 刊名:Biodegradation
  • 出版年:2013
  • 出版时间:June 2013
  • 年:2013
  • 卷:24
  • 期:3
  • 页码:333-341
  • 全文大小:536KB
  • 参考文献:1. Ahring BK, Westermann P (1988) Product inhibition of butyrate metabolism by acetate and hydrogen in a thermophilic coculture. Appl Environ Microbiol 54(10):2393-397 <br> 2. Alvarez PJJ, Illman WA (2006) Bioremediation and natural attenuation: process fundamentals and mathematical models. Wiley, Hoboken <br> 3. American Public Health Association (1992) Standard methods for the examination of water and wastewater. American Public Health Association, American Water Works Association and Water Pollution Control Federation, Washington, DC <br> 4. Anderson RT, Rooney-Varga JN, Gaw CV, Lovley DR (1998) Anaerobic benzene oxidation in the Fe(III) reduction zone of petroleum-contaminated aquifers. Environ Sci Technol 32(9):1222-229 CrossRef <br> 5. Anderson RT, Vrionis HA, Ortiz-Bernad I, Resch CT, Long PE, Dayvault R, Karp K, Marutzky S, Metzler DR, Peacock A, White DC, Lowe M, Lovley DR (2003) Stimulating the in situ activity of / Geobacter species to remove uranium from the groundwater of a uranium-contaminated aquifer. Appl Environ Microbiol 69(10):5884-891 CrossRef <br> 6. Bradley JE, McInerney MJ (2002) Anaerobic microbial metabolism can proceed close to thermodynamic limits. Nature 415:454-56 CrossRef <br> 7. Brazil Law 11.097 from January 13, (2005) Disp?e sobre a introdu??o do biodiesel na matriz energética brasileira, altera as Leis nos 9.478, de 6 de agosto de 1997, 9.847, de 26 de outubro de 1999 e 10.636 de 30 de dezembro de 2002; e dá outras providências. (Refers to the introduction of biodiesel in Brazilian energy matrix, alters the Laws 9.478 from August, 6, 1997; 9.847 from October, 26, 1999 and 10.636 from December, 30, 2002; and makes other provisions) <br> 8. Brazil Ministry of Mines and Energy. National Council of Energy Policy (CNPE), (2009) Estabelece em cinco por cento, em volume, o percentual mínimo obrigatório de adi??o de biodiesel ao óleo diesel comercializado ao consumidor final, de acordo com o disposto no art.o 2o da Lei no 11.097, de 13 de janeiro de 2005. (Establishes up to five percent by volume the minimum percentage required for the addition of biodiesel to diesel oil sold to final consumers, in accordance with the provisions of art. 2 of Law 11.097 from January 13, 2005). Resolution No. 6, September 16, 2009 <br> 9. Bryant M, Campbell L, Reddy C, Crabill M (1977) Growth of / Desulfovibrio in lactate or ethanol media low in sulfate in association with Hb class="a-plus-plus">2b>-utilizing methanogenic bacteria. Appl Environ Microbiol 33(5):1162-169 <br> 10. Caldwell ME, Suflita JM (2000) Detection of phenol and benzoate as intermediates of anaerobic benzene biodegradation under different terminal electron-accepting conditions. Environ Sci Technol 34(7):1216-220 CrossRef <br> 11. Chakraborty R, Coates JD (2004) Anaerobic degradation of monoaromatic hydrocarbons. Appl Microbiol Biotechnol 64(4):437-46 CrossRef <br> 12. Coates JD, Phillips EJP, Lonergan DJ, Jenter H, Lovley DR (1996) Isolation of / Geobacter species from diverse sedimentary environments. Appl Environ Microbiol 62(5):1531-536 <br> 13. Coates JD, Chakraborty R, Lack JG, O′Connor SM, Cole KA, Bender KS, Achenbach LA (2001) Anaerobic benzene oxidation coupled to nitrate reduction in pure culture by two strains of / Dechloromonas. Nature 411:1039-043 CrossRef <br> 14. Cord-Ruwisch R, Lovley DR, Schink B (1998) Growth of / Geobacter sulfurreducens with acetate in syntrophic cooperation with hydrogen-oxidizing anaerobic partners. Appl Environ Microbiol 64(6):2232-236 <br> 15. Corseuil HX, Monier AL, Fernandes M, Schneider MR, Nunes CC, Rosario M, Alvarez PJJ (2011a) BTEX plume dynamics following an ethanol blend release: geochemical footprint and thermodynamic constraints on natural attenuation. Environ Sci Technol 45(8):3422-429 CrossRef <br> 16. Corseuil HX, Monier AL, Gomes APN, Chiaranda HS, Rosário M, Alvarez PJJ (2011b) Biodegradation of soybean and castor oil biodiesel: implications on the natural attenuation of monoaromatic hydrocarbons in groundwater. Groundw Monit Remediat 31(3):111-18 CrossRef <br> 17. Cozzarelli IM, Baedecker MJ, Eganhouse RP, Goerlitz DF (1994) The geochemical evolution of low-molecular-weight organic acids derived from the degradation of petroleum contaminants in groundwater. Geochim Cosmochim Acta 58(2):863-77 CrossRef <br> 18. Dolfing S, Stephen RL, Head IM (2008) Thermodynamic constraints on methanogenic crude oil biodegradation. Int Soc Microbial Ecol 2:442-52 <br> 19. Feris K, Mackay D, de Sieyes N, Chakraborty I, Einarson M, Hristova K, Scow K (2008) Effect of ethanol on microbial community structure and function during natural attenuation of benzene, toluene and o-xylene in a sulfate-reducing aquifer. Environ Sci Technol 42(7):2289-294 CrossRef <br> 20. Gomes APN (2008) Dissertation: Biodegrada??o de Biodiesel Soja, Mamona e Hidrocarbonetos Monoaromáticos em Ambientes Aquáticos. Place Published: Universidade Federal de Santa Catarina. br/tedesimplificado/tde_busca/arquivo.php?codArquivo=306" class="a-plus-plus">http://www.tede.ufsc.br/tedesimplificado/tde_busca/arquivo.php?codArquivo=306. Acessed March 2012 <br> 21. Grbic-Galic D, Vogel T (1987) Transformation of toluene and benzene by mixed Methanogenic cultures. Appl Environ Microbiol 53(2):254-60 <br> 22. Gu Y, Hu S, Chen J, Shao L, He H, Yang Y, Yang S, Jiang W (2009) Ammonium acetate enhances solvent production by / Clostridium acetobutylicum EA 2018 using cassava as a fermentation medium. J Ind Microbiol Biotechnol 36(9):1225-232 CrossRef <br> 23. Hattori S (2008) Syntrophic acetate-oxidizing microbes in methanogenic environments. Microbes Environ 23(2):118-27 CrossRef <br> 24. Heimann A, Jakobsen R, Blodau C (2009) Energetic constraints on H2-dependent terminal electron accepting processes in anoxic environments: a review of observations and model approaches. Environ Sci Technol 44(1):24-3 CrossRef <br> 25. Kazumi J, Caldwell ME, Suflita JM, Lovely DR, Young LY (1997) Anaerobic degradation of benzene in diverse anoxic environments. Environ Sci Technol 31(3):813-18 CrossRef <br> 26. Kotelnikova S, Pedersen K (1997) Evidence for methanogenic Archaea and / Homoacetogenic bacteria in deep granitic rock aquifers. FEMS Microbiol Rev 20(3-):339-49 b00319.x">CrossRef <br> 27. Ladisch MR (1991) Fermentation-derived butanol and scenarios for its uses in energy-related applications. Enzyme Microb Technol 13(3):280-83 CrossRef <br> 28. Lage IDC (2005) Avalia??o de Metodologias para determina??o da permeabilidade em meios porosos: a área experimental da Fazenda Ressacada, SC. (Evaluation of methods to determine permeability in porous media: the experimental site of Fazenda Ressacada, SC). Dissertation. Universidade Federal Rio de Janeiro, Rio de Janeiro <br> 29. Lee MJ, Zinder SH (1988) Hydrogen partial pressures in a thermophilic acetate-oxidizing methanogenic coculture. Appl Environ Microbiol 54(6):1457-461 <br> 30. Lengeler JW, Drews G, Schlegel HG (1999) Biology of the prokaryotes. Blackwell Science, Inc., Malden <br> 31. Lovanh N, Alvarez PJJ (2004) Effect of ethanol, acetate, and phenol on toluene degradation activity and tod-lux expression in / Pseudomonas putida TOD102: evaluation of the metabolic flux dilution model. Biotechnol Bioeng 86(7):801-08 bit.20090">CrossRef <br> 32. Lovanh N, Hunt CS, Alvarez PJJ (2002) Effect of ethanol on BTEX biodegradation kinetics: aerobic continuous culture experiments. Water Res 36(15):3739-746 CrossRef <br> 33. Lovley DR (1997) Microbial Fe(III) reduction in subsurface environments. FEMS Microbiol Rev 30(3-):305-13 b00316.x">CrossRef <br> 34. Mackay DM, Desieyes NR, Einarson MD, Feris KP, Pappas AA, Wood IA, Jacobson L, Justice LG, Noske MN, Cow KM, Wilson JT (2006) Impact of ethanol on the natural attenuation of benzene, toluene and / o-xylene in a normally sulfate-reducing aquifer. Environ Sci Technol 40(19):6123-130 CrossRef <br> 35. McInerney MJ, Bryant MP, Pfennig N (1979) Anaerobic bacterium that degrades fatty acids in syntrophic association with methanogens. Arch Microbiol 122(2):129-35 CrossRef <br> 36. McInerney MJ, Struchtemeyer CG, Sieber J, Mouttaki H, Stams AJM, Schink B, Rohlin L, Gunsalus RP (2008) Physiology, ecology, phylogeny, and genomics of microorganisms capable of syntrophic metabolism. Ann NY Acad Sci 1125:58-2 CrossRef <br> 37. Monot F, Martin JR, Petitdemange H, Gay R (1982) Acetone and butanol production by / Clostridium acetobutylicum in a synthetic medium. Appl Environ Technol 44(6):1318-324 <br> 38. Muyzer G, Stams AJM (2008) The ecology and biotechnology of sulphate-reducing bacteria. Nat Rev Microbiol 6:3729-731 <br> 39. National Contaminants Standard for Biodiesel (2003) Setting national fuel quality standards: paper 6; discussion paper. Canberra, ACT: Environment Australia (2003) blications/pubs/biodiesel-paper.pdf" class="a-plus-plus">http://www.environment.gov.au/atmosphere/fuelquality/publications/pubs/biodiesel-paper.pdf. Accessed Dec 2011 <br> 40. Pasqualino JC, Montané D, Salvadó J (2006) Synergic effects of biodiesel in the biodegradability of fossil-derived fuels. Biomass Bioenergy 30(10):874-79 biombioe.2006.03.002">CrossRef <br> 41. Rakoczy J, Schleinitz KM, Müller N, Richnow HH, Vogt C (2011) Effects of hydrogen and acetate on benzene mineralisation under sulphate-reducing conditions. FEMS Microbiol Ecol 77(2):238-47 CrossRef <br> 42. Reinhard M, Hopkins GD, Steinle-Darling E, LeBron CA (2005) In situ biotransformation of BTEX compounds under methanogenic conditions. Groundw Monit Remediat 25(4):50-9 CrossRef <br> 43. Ruiz-Aguilar GML, O′Reilly K, Alvarez PJJ (2003) Enhanced anaerobic biodegradation of benzene–toluene–ethylbenzene–xylene–ethanol mixtures in bioaugmented aquifer columns. Groundw Monit Remediat 23(1):48-3 b00782.x">CrossRef <br> 44. Silva MLB, Alvarez PJJ (2004) Enhanced anaerobic biodegradation of benzene–toluene–ethylbenzene–xylene–ethanol mixtures in bioaugmented aquifer columns. Appl Environ Microbiol 70(8):4720-726 CrossRef <br> 45. Sousa DZ, Smidt H, Alves MM, Stams AJM (2009) Ecophysiology of syntrophic communities that degrade saturated and unsaturated long-chain fatty acids. FEMS Microbiol Ecol 68(3):257-72 CrossRef <br> 46. Stams AJM, Plugge CM (2009) Electron transfer in syntrophic communities of anaerobic bacteria and archaea. Nat Rev Microbiol 7:568-77 CrossRef <br> 47. Stults JR, Snoeyenbos-West O, Methe B, Lovley DR, Chandler DP (2001) Application of the 5-fluorogenic exonuclease assay (TaqMan) for quantitative ribosomal DNA and rRNA analysis in sediments. Appl Environ Microbiol 67(6):2781-789 CrossRef <br> 48. Thauer RK, Jungermann K, Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41(1):100-80 <br> 49. Ulrich AC, Edwards EA (2003) Physiological and molecular characterization of anaerobic benzene-degrading mixed cultures. Environ Microbiol 5(2):92-02 CrossRef <br> 50. United States Environmental Protection Agency (1998) Carcinogenic effects of benzene: an update, vol 63. United States Environmental Protection Agency, Washington, DC, p 30495 <br> 51. Weiner JM, Lovley DR (1998) Rapid benzene degradation in methanogenic sediments from a petroleum-contaminated aquifer. Appl Environ Microbiol 64(5):1937-939 <br>
  • 作者单位:Débora Toledo Ramos (1) <br> Márcio Luis Busi da Silva (2) <br> Helen Simone Chiaranda (1) <br> Pedro J. J. Alvarez (3) <br> Henry Xavier Corseuil (1) <br><br>1. Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil <br> 2. EMBRAPA, BR153 Km 110, P.O. Box 21, Concórdia, SC, 89700-000, Brazil <br> 3. Department of Civil and Environmental Engineering, Rice University, Houston, TX, USA <br>
  • ISSN:1572-9729
文摘
Field experiments were conducted to assess the potential for anaerobic biostimulation to enhance BTEX biodegradation under fermentative methanogenic conditions in groundwater impacted by a biodiesel blend (B20, consisting of 20?% v/v biodiesel and 80?% v/v diesel). B20 (100?L) was released at each of two plots through an area of 1?m2 that was excavated down to the water table, 1.6?m below ground surface. One release was biostimulated with ammonium acetate, which was added weekly through injection wells near the source zone over 15?months. The other release was not biostimulated and served as a baseline control simulating natural attenuation. Ammonium acetate addition stimulated the development of strongly anaerobic conditions, as indicated by near-saturation methane concentrations. BTEX removal began within 8?months in the biostimulated source zone, but not in the natural attenuation control, where BTEX concentrations were still increasing (due to source dissolution) 2?years after the release. Phylogenetic analysis using quantitative PCR indicated an increase in concentration and relative abundance of Archaea (Crenarchaeota and Euryarchaeota), Geobacteraceae (Geobacter and Pelobacter spp.) and sulfate-reducing bacteria (Desulfovibrio, Desulfomicrobium, Desulfuromusa, and Desulfuromonas) in the biostimulated plot relative to the control. Apparently, biostimulation fortuitously enhanced the growth of putative anaerobic BTEX degraders and associated commensal microorganisms that consume acetate and H2b>, and enhance the thermodynamic feasibility of BTEX fermentation. This is the first field study to suggest that anaerobic-methanogenic biostimulation could enhance source zone bioremediation of groundwater aquifers impacted by biodiesel blends.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700