New insight into the catalytic properties of rice sucrose synthase
详细信息    查看全文
  • 作者:Yu-Chiao Huang ; Erh-Chieh Hsiang ; Chien-Chih Yang ; Ai-Yu Wang
  • 关键词:Sucrose synthase ; Molecular modeling ; Site ; directed mutagenesis ; Enzyme kinetics ; Substrate binding
  • 刊名:Plant Molecular Biology
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:90
  • 期:1-2
  • 页码:127-135
  • 全文大小:1,107 KB
  • 参考文献:Abdian PL, Lellouch AC, Gautier C, Ielpi L, Geremia RA (2000) Identification of essential amino acids in the bacterial α-mannosyltransferase AceA. J Biol Chem 275:40568–40575. doi:10.​1074/​jbc.​M007496200 PubMed CrossRef
    Absmanner B, Schmeiser V, Kampf M, Lehle L (2010) Biochemical characterization, membrane association and identification of amino acids essential for the function of Alg11 from Saccharomyces cerevisiae, an α1,2-mannosyltransferase catalysing two sequential glycosylation steps in the formation of the lipid-linked core oligosaccharide. Biochem J 426:205–217. doi:10.​1042/​BJ20091121 PubMed CrossRef
    Amor Y, Haigler CH, Johnson S, Wainscott M, Delmer DP (1995) A membrane-associated form of sucrose synthase and its potential role in synthesis of cellulose and callose in plants. Proc Natl Acad Sci USA 92:9353–9357PubMed PubMedCentral CrossRef
    Avigad G, Dey PM (1997) Carbohydrate metabolism: storage Carbohydrates. In: Dey PM, Harborne JB (eds) Plant biochemistry. Academic Press, London, pp 143–204. doi:10.​1016/​B978-012214674-9/​50005-9 CrossRef
    Barrero-Sicilia C, Hernando-Amado S, Gonzalez-Melendi P, Carbonero P (2011) Structure, expression profile and subcellular localisation of four different sucrose synthase genes from barley. Planta 234:391–403. doi:10.​1007/​s00425-011-1408-x PubMed CrossRef
    Bologa KL, Fernie AR, Leisse A, Loureiro ME, Geigenberger P (2003) A bypass of sucrose synthase leads to low internal oxygen and impaired metabolic performance in growing potato tubers. Plant Physiol 132:2058–2072PubMed PubMedCentral CrossRef
    Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254PubMed CrossRef
    Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acid Res 37:D233–D238. doi:10.​1093/​nar/​gkn663 PubMed PubMedCentral CrossRef
    Chen CY (2010) Analysis of the cellulose synthase genes associated with primary cell wall synthesis in Bambusa oldhamii. Dissertation, University Taiwan University
    Cid E, Gomis RR, Geremia RA, Guinovart JJ, Ferrer JC (2000) Identification of two essential glutamic acid residues in glycogen synthase. J Biol Chem 275:33614–33621. doi:10.​1074/​jbc.​M005358200 PubMed CrossRef
    Curatti L, Porchia AC, Herrera-Estrella L, Salerno GL (2000) A prokaryotic sucrose synthase gene (susA) isolated from a filamentous nitrogen-fixing cyanobacterium encodes a protein similar to those of plants. Planta 211:729–735PubMed CrossRef
    Curatti L, Giarrocco L, Salerno GL (2006) Sucrose synthase and RuBisCo expression is similarly regulated by the nitrogen source in the nitrogen-fixing cyanobacterium Anabaena sp. Planta 223:891–900. doi:10.​1007/​s00425-005-0142-7 PubMed CrossRef
    Diricks M, De Bruyn F, Van Daele P, Walmagh M, Desmet T (2015) Identification of sucrose synthase in nonphotosynthetic bacteria and characterization of the recombinant enzymes. Appl Microbiol Biot. doi:10.​1007/​s00253-015-6548-7
    Fujii S, Hayashi T, Mizuno K (2010) Sucrose synthase is an integral component of the cellulose synthesis machinery. Plant Cell Physiol 51:294–301. doi:10.​1093/​pcp/​pcp190 PubMed CrossRef
    Geigenberger P, Stitt M (1993) Sucrose synthase catalyses a readily reversible reaction in vivo in developing potato tubers and other plant tissues. Planta 189:329–339. doi:10.​1007/​BF00194429 PubMed CrossRef
    Gordon AJ, Minchin FR, James CL, Komina O (1999) Sucrose synthase in legume nodules is essential for nitrogen fixation. Plant Physiol 120:867–878PubMed PubMedCentral CrossRef
    Hatmi S, Trotel-Aziz P, Villaume S, Couderchet M, Clement C, Aziz A (2014) Osmotic stress-induced polyamine oxidation mediates defence responses and reduces stress-enhanced grapevine susceptibility to Botrytis cinerea. J Exp Bot 65:75–88. doi:10.​1093/​jxb/​ert351 PubMed CrossRef
    Kampf M, Absmanner B, Schwarz M, Lehle L (2009) Biochemical characterization and membrane topology of Alg2 from Saccharomyces cerevisiae as a bifunctional α1,3- and 1,6-mannosyltransferase involved in lipid-linked oligosaccharide biosynthesis. J Biol Chem 284:11900–11912. doi:10.​1074/​jbc.​M806416200 PubMed PubMedCentral CrossRef
    Kleczkowski LA, Geisler M, Ciereszko I, Johansson H (2004) UDP-glucose pyrophosphorylase. An old protein with new tricks. Plant Physiol 134:912–918. doi:10.​1104/​pp.​103.​036053 PubMed PubMedCentral CrossRef
    Koch K (2004) Sucrose metabolism: regulatory mechanisms and pivotal roles in sugar sensing and plant development. Curr Opin Plant Biol 7:235–246. doi:10.​1016/​j.​pbi.​2004.​03.​014 PubMed CrossRef
    Koch KE, Nolte KD, Duke ER, McCarty DR, Avigne WT (1992) Sugar levels modulate differential expression of maize sucrose synthase genes. Plant Cell 4:59–69. doi:10.​1105/​tpc.​4.​1.​59 PubMed PubMedCentral CrossRef
    Kostova Z, Yan BC, Vainauskas S, Schwartz R, Menon AK, Orlean P (2003) Comparative importance in vivo of conserved glutamate residues in the EX7E motif retaining glycosyltransferase Gpi3p, the UDP-GlcNAc-binding subunit of the first enzyme in glycosylphosphatidylinositol assembly. Eur J Biochem/FEBS 270:4507–4514CrossRef
    Mega TL, Cortes S, Vanetten RL (1990) The 18O-isotope shift in 13C nuclear magnetic-resonance spectroscopy: 13. Oxygen exchange at the anomeric carbon of deuterium-glucose, deuterium-mannose, and deuterium-fructose. J Org Chem 55:522–528. doi:10.​1021/​Jo00289a026 CrossRef
    Munoz FJ, Baroja-Fernandez E, Moran-Zorzano MT, Viale AM, Etxeberria E, Alonso-Casajus N, Pozueta-Romero J (2005) Sucrose synthase controls both intracellular ADP glucose levels and transitory starch biosynthesis in source leaves. Plant Cell Physiol 46:1366–1376. doi:10.​1093/​pcp/​pci148 PubMed CrossRef
    Nguyen-Quoc B, Foyer CH (2001) A role for ‘futile cycles’ involving invertase and sucrose synthase in sucrose metabolism of tomato fruit. J Exp Bot 52:881–889PubMed CrossRef
    Nichols DJ, Keeling PL, Spalding M, Guan H (2000) Involvement of conserved aspartate and glutamate residues in the catalysis and substrate binding of maize starch synthase. Biochemistry 39:7820–7825PubMed CrossRef
    Porchia AC, Curatti L, Salerno GL (1999) Sucrose metabolism in cyanobacteria: sucrose synthase from Anabaena sp. strain PCC 7119 is remarkably different from the plant enzymes with respect to substrate affinity and amino-terminal sequence. Planta 210:34–40PubMed CrossRef
    Song D, Shen J, Li L (2010) Characterization of cellulose synthase complexes in Populus xylem differentiation. New Phytol 187:777–790. doi:10.​1111/​j.​1469-8137.​2010.​03315.​x PubMed CrossRef
    Su JC (1977) Purification and characterization of sucrose synthetase from the shoot of bamboo Leleba oldhami. Plant Physiol 60:17–21PubMed PubMedCentral CrossRef
    Tang T, Xie H, Wang Y, Lu B, Liang J (2009) The effect of sucrose and abscisic acid interaction on sucrose synthase and its relationship to grain filling of rice (Oryza sativa L.). J Exp Bot 60:2641–2652. doi:10.​1093/​jxb/​erp114 PubMed CrossRef
    Van Handel E (1968) Direct microdetermination of sucrose. Anal Biochem 22:280–283PubMed CrossRef
    Wang F, Smith AG, Brenner ML (1994) Temporal and spatial expression pattern of sucrose synthase during tomato fruit development. Plant Physiol 104:535–540PubMed PubMedCentral
    Wang H, Sui X, Guo J, Wang Z, Cheng J, Ma S, Li X, Zhang Z (2014) Antisense suppression of cucumber (Cucumis sativus L.) sucrose synthase 3 (CsSUS3) reduces hypoxic stress tolerance. Plant Cell Environ 37:795–810. doi:10.​1111/​pce.​12200 PubMed CrossRef
    Wang Z, Wei P, Wu M, Xu Y, Li F, Luo Z, Zhang J, Chen A, Xie X, Cao P, Lin F, Yang J (2015) Analysis of the sucrose synthase gene family in tobacco: structure, phylogeny, and expression patterns. Planta 242:153–166. doi:10.​1007/​s00425-015-2297-1 PubMed PubMedCentral CrossRef
    Winter H, Huber SC (2000) Regulation of sucrose metabolism in higher plants: localization and regulation of activity of key enzymes. Crit Rev Biochem Mol 35:253–289. doi:10.​1080/​1040923000898416​5 CrossRef
    Wu R, Asencion Diez MD, Figueroa CM, Machtey M, Iglesias AA, Ballicora MA, Liu D (2015) The crystal structure of Nitrosomonas europaea sucrose synthase reveals critical conformational changes and insights into sucrose metabolism in prokaryotes. J Bacteriol 197:2734–2746. doi:10.​1128/​JB.​00110-15 PubMed CrossRef
    Yep A, Ballicora MA, Preiss J (2006) The ADP-glucose binding site of the Escherichia coli glycogen synthase. Arch Biochem Biophys 453:188–196. doi:10.​1016/​j.​abb.​2006.​07.​003 PubMed CrossRef
    Zheng Y, Anderson S, Zhang Y, Garavito RM (2011) The structure of sucrose synthase-1 from Arabidopsis thaliana and its functional implications. J Biol Chem 286:36108–36118. doi:10.​1074/​jbc.​M111.​275974 PubMed PubMedCentral CrossRef
  • 作者单位:Yu-Chiao Huang (1)
    Erh-Chieh Hsiang (1)
    Chien-Chih Yang (1)
    Ai-Yu Wang (1)

    1. Department of Biochemical Science and Technology, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Plant Sciences
    Biochemistry
    Plant Pathology
  • 出版者:Springer Netherlands
  • ISSN:1573-5028
文摘
Sucrose synthase (SuS), which catalyzes the reversible conversion of sucrose and uridine diphosphate (UDP) into fructose and UDP-glucose, is a key enzyme in sucrose metabolism in higher plants. SuS belongs to family 4 of the glycosyltransferases (GT4) and contains an E-X7-E motif that is conserved in members of GT4 and two other GT families. To gain insight into the roles of this motif in rice sucrose synthase 3 (RSuS3), the two conserved glutamate residues (E678 and E686) in this motif and a phenylalanine residue (F680) that resides between the two glutamate residues were changed by site-directed mutagenesis. All mutant proteins maintained their tetrameric conformation. The mutants E686D and F680Y retained partial enzymatic activity and the mutants E678D, E678Q, F680S, and E686Q were inactive. Substrate binding assays indicated that UDP and fructose, respectively, were the leading substrates in the sucrose degradation and synthesis reactions of RSuS3. Mutations on E678, F680, and E686 affected the binding of fructose, but not of UDP. The results indicated that E678, F680, and E686 in the E-X7-E motif of RSuS3 are essential for the activity of the enzyme and the sequential binding of substrates. The sequential binding of the substrates implied that the reaction catalyzed by RSuS can be controlled by the availability of fructose and UDP, depending on the metabolic status of a tissue.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700