Prodrug of green tea epigallocatechin-3-gallate (Pro-EGCG) as a potent anti-angiogenesis agent for endometriosis in mice
详细信息    查看全文
  • 作者:Chi Chiu Wang (1) (2) (3)
    Hui Xu (1)
    Gene Chi Wai Man (1)
    Tao Zhang (1)
    Kai On Chu (1) (4)
    Ching Yan Chu (1)
    Jimmy Tin Yan Cheng (5)
    Gang Li (5) (6)
    Yi Xin He (6)
    Ling Qin (6)
    Tat San Lau (1)
    Joseph Kwong (1)
    Tak Hang Chan (7) (8)
  • 关键词:Endometriosis ; Anti ; angiogenesis ; Green tea ; Epigallocatechin ; 3 ; gallate
  • 刊名:Angiogenesis
  • 出版年:2013
  • 出版时间:January 2013
  • 年:2013
  • 卷:16
  • 期:1
  • 页码:59-69
  • 全文大小:1922KB
  • 参考文献:1. Carmeliet P, Jain RK (2000) Angiogenesis in cancer and other diseases. Nature 407:249-57 CrossRef
    2. Simons M (2005) Angiogenesis: where do we stand now? Circulation 111:1556-566 CrossRef
    3. Taylor RN, Lebovic DI, Mueller MD (2002) Angiogenic factors in endometriosis. Ann N Y Acad Sci 955:89-00 CrossRef
    4. Groothuis PG, Nap AW, Winterhager E, Grümmer R (2005) Vascular development in endometriosis. Angiogenesis 8:147-56 CrossRef
    5. Nisolle M, Casanas-Roux F, Anaf V, Mine JM, Donnez J (1993) Morphometric study of the stromal vascularization in peritoneal endometriosis. Fertil Steril 59:681-84
    6. Becker CM, Rohwer N, Funakoshi T, Cramer T, Bernhardt W, Birsner A, Folkman J, D’Amato RJ (2008) 2-Methoxyestradiol inhibits hypoxia-inducible factor-1α and suppresses growth of lesions in a mouse model of endometriosis. Am J Pathol 172:534-44 CrossRef
    7. Xu H, Lui WT, Chu CY, Ng PS, Wang CC, Rogers MS (2009) Anti-angiogenic effects of green tea catechin on an experimental endometriosis mouse model. Hum Reprod 24:608-18 CrossRef
    8. Hull ML, Charnock-Jones DS, Chan CL, Bruner-Tran KL, Osteen KG, Tom BD, Fan TP, Smith SK (2003) Antiangiogenic agents are effective inhibitors of endometriosis. J Clin Endocrinol Metab 88:2889-899 CrossRef
    9. Heiss ML, Heiss RJ (ed) The story of tea, Ten Speed Press, Berkeley, 2007
    10. Yamamoto T (ed) Chemistry and applications of green tea, CRC Press, Boca Raton, 1997
    11. Nagle DG, Ferreira D, Zhou YD (2006) Epigallocatechin-3-gallate (EGCG): chemical and biomedical perspectives. Phytochemistry 67:1849-855 CrossRef
    12. Cao YH, Cao RH (1999) Angiogenesis inhibited by drinking tea. Nature 398:381 CrossRef
    13. Xu H, Becker CM, Lui WT, Chu CY, Davis TN, Kung AL, Birsner AE, D’Amato RJ, Wai Man GC, Wang CC (2011) Green tea epigallocatechin-3-gallate inhibits angiogenesis and suppresses vascular endothelial growth factor C/vascular endothelial growth factor receptor 2 expression and signaling in experimental endometriosis in vivo. Fertil Steril 96:1021-028 CrossRef
    14. Chen Z, Zhu QY, Tsang D, Huang Y (2001) Degradation of green tea catechins in tea drinks. J Agric Food Chem 49:477-82 CrossRef
    15. Lam WH, Kazi A, Kuhn DJ, Chow LM, Chan AS, Dou QP, Chan TH (2004) A potential prodrug for a green tea polyphenol proteasome inhibitor: evaluation of the peracetate ester of (-)-epigallocatechin gallate [(-)-EGCG]. Bioorg Med Chem 12:5587-593 CrossRef
    16. Nap AW, Griffioen AW, Dunselman GAJ, Bouma-Ter Steege JCA, Tijssen VJL, Evers JLH, Groothuis PG (2004) Antiangiogenesis therapy for endometriosis. J Clin Endocrinol Metab 89:1089-095 CrossRef
    17. Bruner-Tran KL, Osteen KG, Duleba AJ (2009) Simvastatin protects against the development of endometriosis in a nude mouse model. J Clin Endocrinol Metab 94:2489-494 CrossRef
    18. Sang S, Lambert JD, Hong J, Tian S, Lee MJ, Stark RE, Ho CT, Yang CS (2005) Synthesis and structure identification of thiol conjugates of (-)-epigallocatechin gallate and their urinary levels in mice. Chem Res Toxicol 18:1762-769 CrossRef
    19. Villayandre BM, Paniagua MA, Fernandez-Lopez A, Chinchetrua MA, Calvo P (2004) Effect of vitamin E treatment on / N-methyl-d-aspartate receptor at different ages in the rat brain. Brain Res 1028:148-55 CrossRef
    20. Song C, Xiang J, Tang J, Hirst DG, Zhou J, Chan KM, Li G (2011) Thymidine kinase gene modified bone marrow mesenchymal stem cells as vehicles for antitumor therapy. Hum Gene Ther 22:439-49 CrossRef
    21. Sun MH, Leung KS, Zheng YP, Huang YP, Wang LK, Qin L, Leung AH, Chow SK, Cheung WH (2012) Three-dimensional high frequency power Doppler ultrasonography for the assessment of microvasculature during fracture healing in a rat model. J Orthop Res 30:137-43 CrossRef
    22. Chu KO, Wang CC, Chu CY, Rogers MS, Choy KW, Pang CP (2004) Method for determination of catechins and catechin gallates in tissues by HPLC with coulometric array detection and selective solid-phase extraction. J Chromat B 810:187-95
    23. Chu KO, Wang CC, Rogers MS, Choy KW, Pang CP (2004) Determination of catechins and catechin gallates in biological fluids by liquid chromatography with coulometric array detection and solid-phase extraction. Anal Chim Acta 510:69-6 CrossRef
    24. Wang CC, Chu CY, Chu KO, Choy KW, Rogers MS, Khaw KS, Pang CP (2004) Trolox-equivalent antioxidant capacity (TEAC) assay versus oxygen radical absorbance capacity (ORAC) assay in plasma. Clin Chem 50:952-54 CrossRef
    25. Graham HN (1992) Green tea composition, consumption and polyphenol chemistry. Preventive Med 21:334-50 CrossRef
    26. Lea CH, Swoboda PAT (1957) The antioxidant action of some polyphenolic constituents of tea. Chem Ind 1073-074
    27. Zhu QY, Zhang A, Tsang D, Huang Y, Chen ZY (1997) Stability of green tea catechins. J Agric Food Chem 45:4624-628 CrossRef
    28. Lambert JD, Sang S, Hong J, Kwon SJ, Lee MJ, Ho CT, Yang CS (2006) Peracetylation as a means of enhancing in vitro bioactivity and bioavailability of epigallocatechin-3-gallate. Drug Metab Dispos 34:2111-116 CrossRef
    29. Fassina G, Vene R, Morini M, Minghelli S, Benelli R, Noonan DM, Albini A (2004) Mechanisms of inhibition of tumor angiogenesis and vascular tumor growth by epigallocatechin-3-gallate. Clin Cancer Res 10:4865-873 CrossRef
    30. Liao J, Yang GY, Park ES, Meng X, Sun Y, Jia D, Seril DN, Yang CS (2004) Inhibition of lung carcinogenesis and effects on angiogenesis and apoptosis in A/J mice by oral administration of green tea. Nutr Cancer 48:44-3 CrossRef
    31. Lamy S, Gingras D, Beliveau R (2002) Green teas catechins inhibit vascular endothelial growth factor receptor phosphorylation. Cancer Res 62:381-85
    32. Kojima-Yuasa A, Hua JJ, Kennedy DO, Matsui-Yuasa I (2003) Green tea extract inhibits angiogenesis of human umbilical vein endothelial cells through reduction of expression of VEGF receptors. Life Sci 73:1299-313 CrossRef
    33. Kondo T, Ohta T, Igura K, Hara Y, Kaji K (2002) Tea catechins inhibit angiogenesis in vitro, measured by human endothelial cell growth, migration and tube formation, through inhibition of VEGF receptor binding. Cancer Lett 180:139-44 CrossRef
    34. Jung YD, Kim MS, Shin BA, Chay KO, Ahn BW, Liu W, Bucana CD, Gallick GE, Ellis LM (2001) EGCG, a major component of green tea, inhibits tumor growth by inhibiting VEGF induction in human colon carcinoma cells. Br J Cancer 84:844-50 CrossRef
    35. Sartippour MR, Shao ZM, Heber D, Beatty P, Zhang L, Liu C, Ellis L, Liu W, Go VL, Brooks MN (2002) Green tea inhibits vascular endothelial growth factor (VEGF) induction in human breast cancer cells. J Nutr 132:2307-311
    36. Lee SC, Chan WK, Lee TW, Lam WH, Wang X, Chan TH, Wong YC (2008) Effect of a prodrug of the green tea polyphenol (-)-epigallocatechin-3-gallate on the growth of androgen-independent prostate cancer in vivo. Nutr Cancer 60:483-91 CrossRef
    37. Kuhn D, Lam WH, Kazi A, Daniel KG, Song S, Chow LM, Chan TH, Dou QP (2005) Synthetic peracetate tea polyphenols as potent proteasome inhibitors and apoptosis inducers in human cancer cells. Front Biosci 10:1010-023 CrossRef
    38. Becker CM, Wright RD, Satchi-Fainaro R, Funakoshi T, Folkman J, Kung AL, D’Amato RJ (2006) A novel noninvasive model of endometriosis for monitoring the efficacy of antiangiogenesi therapy. Am J Pathol 168:2074-084 CrossRef
    39. Rice VM (2002) Conventional medical therapies for endometriosis. Ann N Y Acad Sci 955:343-52 CrossRef
    40. Xu H, Wang CC (2010) Angiogenesis and anti-angiogenesis therapy of endometriosis. In: Mitchell LA (ed) Endometriosis: symptoms, diagnosis and treatments, Chapter 1. Nova Science, New York, pp 1-0
    41. Dabrosin C, Gyorffy S, Margetts P, Ross C, Gauldie J (2002) Therapeutic effect of angiostatin gene transfer in a murine model of endometriosis. Am J Pathol 161:909-18 CrossRef
    42. Yagyu T, Kobayashi H, Matsuzaki H, Wakahara K, Kondo T, Kurita N, Sekino H, Inagaki K, Suzuki M, Kanayama N, Terao T (2005) Thalidomide inhibits tumor necrosis factor-alpha-induced interleukin-8 expression in endometriotic stromal cells, possibly through suppression of nuclear factor-kappaB activation. J Clin Endocrinol Metab 90:3017-021 CrossRef
    43. Scarpellini F, Sbracia M, Lecchini S, Scarpellini L (2002) Anti-angiogenesis treatment with thalidomide in endometriosis: a pilot study. Fertil Steril 78:S87 CrossRef
    44. Nyberg P, Xie L, Kalluri R (2005) Endogenous inhibitors of angiogenesis. Cancer Res 65:3967-979 CrossRef
    45. Klauber N, Rohan RM, Flynn E, D’Amato RJ (1997) Critical components of the female reproductive pathway are suppressed by the angiogenesis inhibitor AGM-1470. Nat Med 3:443-46 CrossRef
    46. Becker CM, Sampson DA, Rupnick MA, Rohan RM, Efstathiou JA, Short SM, Taylor GA, Folkman J, D’Amato RJ (2005) Endostatin inhibits the growth of endometriotic lesions but does not affect fertility. Fertil Steril 84(Suppl 2):1144-155 CrossRef
    47. Kazi A, Wang Z, Kumar N, Falsetti SC, Chan TH, Dou QP (2004) Structure-activity relationships of synthetic analogs of (-)-epigallocatechin-3-gallate as proteasome inhibitors. Anticancer Res 24:943-54
    48. Cao YH, Cao RH, Br?kenhielm E (2002) Antiangiogenic mechanisms of diet-derived polyphenols. J Nutr Biochem 13:380-90 CrossRef
  • 作者单位:Chi Chiu Wang (1) (2) (3)
    Hui Xu (1)
    Gene Chi Wai Man (1)
    Tao Zhang (1)
    Kai On Chu (1) (4)
    Ching Yan Chu (1)
    Jimmy Tin Yan Cheng (5)
    Gang Li (5) (6)
    Yi Xin He (6)
    Ling Qin (6)
    Tat San Lau (1)
    Joseph Kwong (1)
    Tak Hang Chan (7) (8)

    1. Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong
    2. Reproduction, Development and Endocrinology, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
    3. Regenerative Medicine, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong
    4. Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong Eye Hospital, Kowloon, Hong Kong
    5. Stem Cells and Regeneration Program, School of Biomedical Sciences and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong
    6. Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong
    7. Department of Chemistry, McGill University, Montreal, QC, H3A 2K6, Canada
    8. Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
  • ISSN:1573-7209
文摘
Green tea epigallocatechin-3-gallate (EGCG) can inhibit angiogenesis and development of an experimental endometriosis model in mice, but it suffers from poor bioavailability. A prodrug of EGCG (pro-EGCG, EGCG octaacetate) is utilized to enhance the stability and bioavailability of EGCG in vivo. In this study, the potential of pro-EGCG as a potent anti-angiogenesis agent for endometriosis in mice was investigated. Homologous endometrium was subcutaneously transplanted into mice to receive either saline, vitamin E, EGCG or pro-EGCG treatment for 4?weeks. The growth of the endometrial implants were monitored by IVIS? non-invasive in vivo imaging during the interventions. Angiogenesis of the endometriotic lesions was determined by Cellvizio? in vivo imaging and SCANCO? Microfil microtomography. The bioavailability, anti-oxidation and anti-angiogenesis capacities of the treatments were measured in plasma and lesions. The implants with adjacent outer subcutaneous and inner abdominal muscle layers were collected for histological, microvessel and apoptosis examinations. The result showed that EGCG and pro-EGCG significantly decreased the growth of endometrial implants from the 2nd week to the 4th week of intervention. EGCG and pro-EGCG significantly reduced the lesion size and weight, inhibited functional and structural microvessels in the lesions, and enhanced lesion apoptosis at the end of interventions. The inhibition by pro-EGCG in all the angiogenesis parameters was significantly greater than that by EGCG, and pro-EGCG also had better bioavailability and greater anti-oxidation and anti-angiogenesis capacities than EGCG. Ovarian follicles and uterine endometrial glands were not affected by either EGCG or pro-EGCG. Vitamin E had no effect on endometriosis. In conclusion, pro-EGCG significantly inhibited the development, growth and angiogenesis of experimental endometriosis in mice with high efficacy, bioavailability, anti-oxidation and anti-angiogenesis capacities. Pro-EGCG could be a potent anti-angiogenesis agent for endometriosis.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700