The Effect of the Thickness of the Low Temperature AlN Nucleation Layer on the Material Properties of GaN Grown on a Double-Step AlN Buffer Layer by the MOCVD Method
详细信息    查看全文
  • 作者:Wei-Ching Huang ; Chung-Ming Chu ; Chi-Feng Hsieh…
  • 关键词:AlN ; GaN ; surface morphology ; polarity ; nucleation layer ; inversion domain
  • 刊名:Journal of Electronic Materials
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:45
  • 期:2
  • 页码:859-866
  • 全文大小:1,782 KB
  • 参考文献:1.Y.F. Wu, D. Kapolnek, J.P. Ibbetson, P. Parikh, B.P. Keller, and U.K. Mishra, IEEE Trans. Electron Devices 48, 586 (2001).CrossRef
    2.D.H. Youn, J.H. Lee, V. Kumar, R. Schwindt, W.J. Chang, J.Y. Hong, C.M. Jeon, S.B. Bae, M.R. Park, K.S. Lee, J.L. Lee, J.H. Lee, and I. Adesida, Electron. Lett. 39, 566 (2003).CrossRef
    3.S.A. Kukushkin, A.V. Osipov, V.N. Bessolov, B.K. Medvedev, V.K. Nevolin, and K.A. Tcarik, Rev. Adv. Mater. Sci. 17, 1 (2008).
    4.G. Popovici, W. Kim, A. Botchkarev, H.P. Tang, H. Morkoc, and J. Solomon, Appl. Phys. Lett. 71, 3385 (1997).CrossRef
    5.H.B. Yu, D. Caliskan, and E. Ozbay, J. Appl. Phys. 100, 033501 (2006).CrossRef
    6.K. Jeganathan, X.Q. Shen, T. Ide, M. Shimizu, and H. Okumura, Jpn. J. Appl. Phys. 1, 4454 (2002).CrossRef
    7.J.C. Zhang, D.G. Zhao, J.F. Wang, Y.T. Wang, J. Chen, J.P. Liu, and H. Yang, J. Cryst. Growth 268, 24 (2004).CrossRef
    8.J.N. Kuznia, M.A. Khan, D.T. Olson, R. Kaplan, and J. Freitas, J. Appl. Phys. 73, 4700 (1993).CrossRef
    9.D.G. Zhao, J.J. Zhu, Z.S. Liu, S.M. Zhang, H. Yang, and D.S. Jiang, Appl. Phys. Lett. 85, 1499 (2004).CrossRef
    10.Y.Y. Wong, E.Y. Chang, T.H. Yang, J.R. Chang, Y.C. Chen, J.T. Ku, C.T. Lee, and C.W. Chang, J. Cryst. Growth 311, 1487 (2009).CrossRef
    11.S. Das Bakshi, J. Sumner, M.J. Kappers, and R.A. Oliver, J. Cryst. Growth 311, 232 (2009).CrossRef
    12.H. Yu, M.K. Ozturk, S. Ozcelik, and E. Ozbay, J. Cryst. Growth 293, 273 (2006).CrossRef
    13.G. Parish, S. Keller, S.P. Denbaars, and U.K. Mishra, J. Electron. Mater. 29, 15 (2000).CrossRef
    14.Y. Wang, N.S. Yu, M. Li, and K.M. Lau, Adv. Mater. 415–417, 1959 (2012).CrossRef
    15.T.K. Zywietz, J. Neugebauer, and M. Scheffler, Appl. Phys. Lett. 74, 1695 (1999).CrossRef
    16.M. Stutzmann, O. Ambacher, M. Eickhoff, U. Karrer, A.L. Pimenta, R. Neuberger, J. Schalwig, R. Dimitrov, P.J. Schuck, and R.D. Grober, Phys. Status Solidi B 228, 505 (2001).CrossRef
    17.D. Zhuang and J.H. Edgar, Mater. Sci. Eng. R 48, 1 (2005).CrossRef
    18.J. Jasinski, Z. Liliental-Weber, Q.S. Paduano, and D.W. Weyburne, Appl. Phys. Lett. 83, 2811 (2003).CrossRef
    19.D.A. Stocker, E.F. Schubert, and J.M. Redwing, Appl. Phys. Lett. 73, 2654 (1998).CrossRef
    20.M. Sumiya and S. Fuke, MRS Internet J. Nitride Semicond. Res. 9, 73 (2004).
    21.F. Liu, R. Collazo, S. Mita, G. Duscher, and S. Pennycook, Appl. Phys. Lett. 92, 121902 (2008).CrossRef
    22.H. Miyake, A. Motogaito, and K. Hiramatsu, Jpn. J. Appl. Phys. 2, L1000 (1999).CrossRef
    23.M. Gonsalves, W. Kim, V. Narayanan, and S. Mahajan, J. Cryst. Growth 240, 347 (2002).CrossRef
    24.F. Ren, Z.B. Hao, J.N. Hu, C. Zhang, and Y. Luo, Chin. Phys. B 19, 076803 (2010).CrossRef
    25.K. Lorenz, M. Gonsalves, W. Kim, V. Narayanan, and S. Mahajan, Appl. Phys. Lett. 77, 3391 (2000).CrossRef
  • 作者单位:Wei-Ching Huang (1)
    Chung-Ming Chu (2)
    Chi-Feng Hsieh (1)
    Yuen-Yee Wong (1)
    Kai-wei Chen (1)
    Wei-I Lee (2)
    Yung-Yi Tu (1)
    Edward-Yi Chang (1)
    Chang Fu Dee (3)
    B. Y. Majlis (3)
    S. L. Yap (4)

    1. Department of Materials Science and Engineering National Chiao Tung University, 1001 University Rd., Hsinchu, 30010, Taiwan
    2. Department of Electrophysics National Chiao Tung University, 1001 University Rd., Hsinchu, 30010, Taiwan
    3. Institute of Microengineering and Nanoelectronics, Universiti Kebangsaan Malaysia (UKM), 43600, Bangi, Selangor, Malaysia
    4. Department of Physics, Faculty of Science, Plasma Technology Research Centre, University of Malaya, 50603, Kuala Lumpur, Malaysia
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Optical and Electronic Materials
    Characterization and Evaluation Materials
    Electronics, Microelectronics and Instrumentation
    Solid State Physics and Spectroscopy
  • 出版者:Springer Boston
  • ISSN:1543-186X
文摘
The influence of low-temperature AlN (LT-AlN) nucleation layer thickness on the material properties of the GaN layer grown on the double-step AlN layer is investigated. When GaN was grown without the LT-AlN nucleation layer, the GaN layer has low sheet resistance of 464 ohm/sq and the surface was decorated with pitted region. On the other hand, when a LT-AlN layer with a thickness of 5 nm was inserted, a GaN layer with sheet resistance higher than 106 ohm/sq was achieved. This thin nucleation layer also improved the GaN morphology, suppressed inversion domain formation, and reduced oxygen impurity incorporation. However, the surface morphology and quality of the GaN crystal were severely degraded when the LT-AlN thickness was increased to 10 nm due to the formation of disorientated grains in the LT-AlN layer. Keywords AlN GaN surface morphology polarity nucleation layer inversion domain

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700