Toward numerical simulations of fluid–structure interactions for investigation of obstructive sleep apnea
详细信息    查看全文
  • 作者:Chien-Jung Huang ; Shao-Ching Huang
  • 关键词:Fluid–structure interaction ; Immersed boundary method ; Biomedical flows
  • 刊名:Theoretical and Computational Fluid Dynamics
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:30
  • 期:1-2
  • 页码:87-104
  • 全文大小:1,996 KB
  • 参考文献:1.Adams H.P., del Zoppo G., Alberts M.J., Bhatt D.L., Brass L., Furlan A., Grubb R.L., Higashida R.T., Jauch E.C., Kidwell C. et al.: Guidelines for the early management of adults with ischemic stroke. Circulation 115(20), e478–e534 (2007)CrossRef
    2.Bathe K.J.: Finite Element Procedures. Klaus-Jurgen Bathe, Cambridge, MA (2006)
    3.Bhardwaj R., Mittal R.: Benchmarking a coupled immersed-boundary-finite-element solver for large-scale flow-induced deformation. AIAA J. 50(7), 1638–1642 (2012)CrossRef
    4.Chouly F., Van Hirtum A., Lagrée P.Y., Pelorson X., Payan Y.: Numerical and experimental study of expiratory flow in the case of major upper airway obstructions with fluid–structure interaction. J. Fluids Struct. 24(2), 250–269 (2008)CrossRef
    5.Collins T.P., Tabor G.R., Young P.G.: A computational fluid dynamics study of inspiratory flow in orotracheal geometries. Med. Biol. Eng. Comput. 45(9), 829–836 (2007)CrossRef
    6.Dunne T.: An Eulerian approach to fluid–structure interaction and goal-oriented mesh adaptation. Int. J. Numer. Methods Fluids 51(9-10), 1017–1039 (2006)CrossRef MathSciNet MATH
    7.Huang Y., White D.P., Malhotra A.: Use of computational modeling to predict responses to upper airway surgery in obstructive sleep apnea. Laryngoscope 117(4), 648–653 (2007)CrossRef
    8.Jeong S.J., Kim W.S., Sung S.J.: Numerical investigation on the flow characteristics and aerodynamic force of the upper airway of patient with obstructive sleep apnea using computational fluid dynamics. Med. Eng. Phys. 29(6), 637–651 (2007)CrossRef
    9.Kleinstreuer C., Zhang Z.: Laminar-to-turbulent fluid–particle flows in a human airway model. Int. J. Multiph. Flow 29(2), 271–289 (2003)CrossRef MATH
    10.Luo X.Y., Pedley T.J.: A numerical simulation of unsteady flow in a two-dimensional collapsible channel. J. Fluid Mech. 314, 191–226 (1996)CrossRef MATH
    11.Marin J., Agusti A., Villar I., Forner M., Nieto D., Carrizo S.J., Barbé F., Vicente E., Wei Y., Nieto F.J. et al.: Association between treated and untreated obstructive sleep apnea and risk of hypertension. Surv. Anesthesiol. 57(1), 50–51 (2013)CrossRef
    12.MATLAB: Version 8.4.0. The MathWorks Inc., Natick (2014)
    13.Mihaescu M., Murugappan S., Kalra M., Khosla S., Gutmark E.: Large Eddy simulation and Reynolds-averaged Navier–Stokes modeling of flow in a realistic pharyngeal airway model: an investigation of obstructive sleep apnea. J. Biomech. 41(10), 2279–2288 (2008)CrossRef
    14.Mohammad Rasani M., Inthavong K., Tu J.: Simulation of pharyngeal airway interaction with air flow using low-re turbulence model. Model. Simul. Eng. 2011, 1–9 (2011)CrossRef
    15.Newmark, N.M.: A method of computation for structural dynamics. J. Eng. Mech. Div. 85, 67–94 (1959)
    16.Punjabi N.M.: The epidemiology of adult obstructive sleep apnea. Proc. Am. Thorac. Soc. 5(2), 136 (2008)CrossRef
    17.Shome B., Wang L., Santare M., Prasad A., Szeri A., Roberts D.: Modeling of airflow in the pharynx with application to sleep apnea. J. Biomech. Eng. 120(3), 416–422 (1998)CrossRef
    18.Sun X., Yu C., Wang Y., Liu Y.: Numerical simulation of soft palate movement and airflow in human upper airway by fluid–structure interaction method. Acta Mech. Sin. 23(4), 359–367 (2007)CrossRef MATH
    19.Tian F.B., Dai H., Luo H., Doyle J.F., Rousseau B.: Fluid–structure interaction involving large deformations: 3D simulations and applications to biological systems. J. Comput. Phys. 258, 451–469 (2014)CrossRef MathSciNet
    20.Turek S., Hron J.: Proposal for numerical benchmarking of fluid–structure interaction between an elastic object and laminar incompressible flow. In: Bungartz, H.J., Schäfer, M. (eds) Fluid–Structure Interaction, Lecture Notes in Computational Science and Engineering, vol. 53, pp. 371–385. Springer, Berlin (2006)
    21.Valham F., Mooe T., Rabben T., Stenlund H., Wiklund U., Franklin K.A.: Increased risk of stroke in patients with coronary artery disease and sleep apnea a 10-year follow-up. Circulation 118(9), 955–960 (2008)CrossRef
    22.Vos W., De Backer J., Devolder A., Vanderveken O., Verhulst S., Salgado R., Germonpré P., Partoens B., Wuyts F., Parizel P. et al.: Correlation between severity of sleep apnea and upper airway morphology based on advanced anatomical and functional imaging. J. Biomech. 40(10), 2207–2213 (2007)CrossRef
    23.Wang Y., Wang J., Liu Y., Yu S., Sun X., Li S., Shen S., Zhao W.: Fluid–structure interaction modeling of upper airways before and after nasal surgery for obstructive sleep apnea. Int. J. Numer. Methods Biomed. Eng. 28(5), 528–546 (2012)CrossRef MathSciNet MATH
    24.Wilcox D.C.: Comparison of two-equation turbulence models for boundary layers with pressure gradient. AIAA J. 31(8), 1414–1421 (1993)CrossRef MATH
    25.Xu C., Sin S., McDonough J.M., Udupa J.K., Guez A., Arens R., Wootton D.M.: Computational fluid dynamics modeling of the upper airway of children with obstructive sleep apnea syndrome in steady flow. J. Biomech. 39(11), 2043–2054 (2006)CrossRef
    26.Yang J., Balaras E.: An embedded-boundary formulation for large-eddy simulation of turbulent flows interacting with moving boundaries. J. Comput. Phys. 215(1), 12–40 (2006)CrossRef MathSciNet MATH
    27.Young T., Evans L., Finn L., Palta M.: Estimation of the clinically diagnosed proportion of sleep apnea syndrome in middle-aged men and women. Sleep 20(9), 705–706 (1997)
    28.Zhao H., Freund J.B., Moser R.D.: A fixed-mesh method for incompressible flow–structure systems with finite solid deformations. J. Comput. Phys. 227(6), 3114–3140 (2008)CrossRef MathSciNet MATH
    29.Zhao M., Barber T., Cistulli P.A., Sutherland K., Rosengarten G.: Simulation of upper airway occlusion without and with mandibular advancement in obstructive sleep apnea using fluid–structure interaction. J. Biomech. 46(15), 2586–2592 (2013)CrossRef
    30.Zhu Y., Wang Y., Hellrung J., Cantarero A., Sifakis E., Teran J.M.: A second-order virtual node algorithm for nearly incompressible linear elasticity in irregular domains. J. Comput. Phys. 231(21), 7092–7117 (2012)CrossRef MathSciNet MATH
  • 作者单位:Chien-Jung Huang (1)
    Shao-Ching Huang (2)
    Susan M. White (3)
    Sanjay M. Mallya (3)
    Jeff D. Eldredge (1)

    1. Mechanical and Aerospace Engineering, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, CA, 90095-1597, USA
    2. UCLA Institute for Digital Research and Education, Los Angeles, CA, USA
    3. Oral and Maxillofacial Radiology, UCLA School of Dentistry, Los Angeles, CA, USA
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Fluids
    Mathematical and Computational Physics
    Engineering Fluid Dynamics
    Computational Science and Engineering
    Thermodynamics
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-2250
文摘
Obstructive sleep apnea (OSA) is a medical condition characterized by repetitive partial or complete occlusion of the airway during sleep. The soft tissues in the airway of OSA patients are prone to collapse under the low-pressure loads incurred during breathing. This paper describes efforts toward the development of a numerical tool for simulation of air–tissue interactions in the upper airway of patients with sleep apnea. A procedure by which patient-specific airway geometries are segmented and processed from dental cone-beam CT scans into signed distance fields is presented. A sharp-interface embedded boundary method based on the signed distance field is used on Cartesian grids for resolving the airflow in the airway geometries. For simulation of structure mechanics with large expected displacements, a cut-cell finite element method with nonlinear Green strains is used. The fluid and structure solvers are strongly coupled with a partitioned iterative algorithm. Preliminary results are shown for flow simulation inside the three-dimensional rigid upper airway of patients with obstructive sleep apnea. Two validation cases for the fluid–structure coupling problem are also presented.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700