Large unsaturated positive and negative magnetoresistance in Weyl semimetal TaP
详细信息    查看全文
  • 作者:JianHua Du ; HangDong Wang ; Qin Chen
  • 关键词:Weyl semimetal ; positive and negative magnetoresistance ; Weyl fermions
  • 刊名:SCIENCE CHINA Physics, Mechanics & Astronomy
  • 出版年:2016
  • 出版时间:May 2016
  • 年:2016
  • 卷:59
  • 期:5
  • 全文大小:1,196 KB
  • 参考文献:1.S. Murakami, New J. Phys. 9, 356 (2007).ADS CrossRef
    2.L. Balents, Physics 4, 36 (2011).CrossRef
    3.A. A. Burkov, and L. Balents, Phys. Rev. Lett. 107, 127205 (2011).ADS CrossRef
    4.A. A. Burkov, M. D. Hook, and L. Balents, Phys. Rev. B 84, 235126 (2011).ADS CrossRef
    5.G. B. Halasz, and L. Balents, Phys. Rev. B 85, 035103 (2012).ADS CrossRef
    6.X. G. Wan, A. M. Turner, A. Vishwanath, and S. Savrasov, Phys. Rev. B 83, 205101 (2011).ADS CrossRef
    7.G. Xu, H. M. Weng, Z. J. Wang, X. Dai, and Z. Fang, Phys. Rev. Lett. 107, 186806 (2011).ADS CrossRef
    8.J. P. Liu, and D. Vanderbilt, Phys. Rev. B 90, 155316 (2014).ADS CrossRef
    9.H. M. Weng, C. Fang, Z. Fang, B. A. Bernevig, and X. Dai, Phys. Rev. X 5, 011029 (2015).
    10.S. M. Huang, S. Y. Xu, I. Belopolski, C. C. Lee, G. Q. Chang, B. K. Wang, N. Alidoust, G. Bian, M. Neupane, C. L. Zhang, S. Jia, A. Bansil, H. Lin, and M. Z. Hasan, Nat. Commun. 6, 7373 (2015).ADS CrossRef
    11.B. Q. Lv, N. Xu, H. M. Weng, J. Z. Ma, P. Richard, X. C. Huang, L. X. Zhao, G. F. Chen, C. E. Matt, F. Bisti, V. N. Strocov, J. Mesot, Z. Fang, X. Dai, T. Qian, M. Shi, and H. Ding, Nat. Phys. 11, 724 (2015).CrossRef
    12.C. Shekhar, A. K. Nayak, Y. Sun, M. Schmidt, M. Nicklas, I. Leermakers, U. Zeitler, Y. Skourski, J. Wosnitza, Z. K. Liu, Y. L. Chen, W. Schnelle, H. Borrmann, Y. Grin, C. Felser, and B. H. Yan, Nat. Phys. 11, 645 (2015).CrossRef
    13.X. C. Huang, L. X. Zhao, Y.J. Long, P. P. Wang, D. Chen, Z. H. Yang, H. Liang, M. Q. Xue, H. M. Weng, Z. Fang, X. Dai, and G. F. Chen, Phys. Rev. X 5, 031023 (2015).
    14.C. L. Zhang, Z. J. Yuan, S. Y. Xu, Z. Q. Lin, B. B. Tong, M. Z. Hasan, J. F.Wang, C. Zhang, and S. Jia, [arXiv: 1502.00251].
    15.Z. Wang, Y. Zheng, Z. X. Shen, Y. Zhou, X. J. Yang, Y. P. Li, C. M. Feng, and Z. A. Xu, [arXiv: 1506.00924].
    16.J. E. Lenz, Proc. IEEE 78, 973 (1990).ADS CrossRef
    17.Y. Moritomo, A. Asamitsu, H. Kuwahara, and Y. Tokura, Nature 380, 141 (1996).ADS CrossRef
    18.J. Daughton, J. Magn. Magn. Mater. 192, 334 (1999).ADS CrossRef
    19.W. F. Egeihoff, T. Ha, R. D. K. Misra, Y. Kadmon, J. Nir, C. J. Powell, M. D. Stiles, R. D. McMichael, C. L. Lin, J. M. Sivertsen, J. H. Judy, K. Takano, A. E. Berkowitz, T. C. Anthony, and J. A. Brug, J. Appl. Phys. 78, 273 (1995).ADS CrossRef
    20.A. P. Ramirez, R. J. Cava, and J. Krajewski, Nature 386, 156 (1997).ADS CrossRef
    21.S. Jin, M. McCormack, T. H. Tiefel, and R. Ramesh, J. Appl. Phys. 76, 6929 (1994).ADS CrossRef
    22.F. Y. Yang, K. Liu, K. M. Hong, D. H. Reich, P. C. Searson, and C. L. Chien, Science 284, 1335 (1999).ADS CrossRef
    23.R. Xu, A. Husmann, T. F. Rosenbaum, M. L. Saboungi, J. E. Enderby, and P. B. Littlewood, Nature 390, 57 (1997).ADS CrossRef
    24.S. Ishiwata, Y. Shiomi, J. S. Lee, M. S. Bahramy, T. Suzuki, M. Uchida, R. Arita, Y. Taguchi, and Y. Tokura, Nat. Mater. 12, 512 (2013).ADS CrossRef
    25.S. A. Solin, T. Thio, D. R. Hines, and J. J. Heremans, Science 289, 1530 (2000).ADS CrossRef
    26.M. N. Ali, J. Xiong, S. Flynn, J. Tao, Q. D. Gibson, L. M. Schoop, T. Liang, N. Haldolaarachchige, M. Hirschberger, N. P. Ong, and R. J. Cava, Nature 514, 205 (2014).ADS
    27.X. J. Yang, Y. P. Li, Z. Wang, Y. Zhen, and Z. A. Xu, [arXiv: 1506.02283].
    28.Y. Kopelevich, V. V. Lemanov, S. Moehleche, and H. S. Torres, Phys. Solid State 41, 1959 (1999).ADS CrossRef
    29.Y. Kopelevich, J. H. S. Torres, R. R. da Sila, F. Wrowka, H. Kempa, and P. Esqyuinazi, Phys. Rev. Lett. 90, 156402 (2003).ADS CrossRef
    30.W. Zhang, R. Yu, W. X. Feng, Y. Q. Yao, H. M. Weng, X. Dai, and Z. Fang, Phys. Rev. Lett. 106, 156808 (2011).ADS CrossRef
    31.L. P. He, X. C. Hong, J. K. Dong, J. Pan, Z. Zhang, J. Zhang, and S. Y. Li, Phys. Rev. Lett. 113, 246402 (2014).ADS CrossRef
    32.N. J. Ghimire, Y. K. Luo, M. Neupane, D. J. Williams, E. D. Bauer, and F. Ronning, J. Phys. Condens. Matter 27, 152201 (2015).ADS CrossRef
    33.A. B. Pippard, Magnetoresitance in Metals (Cambridge University Press, Cambridge, 1989).
    34.N. Ramakrishnan, M. Milletari, and S. Adam, [arXiv: 1501.03815].
    35.C. M. Hurd, The Hall Effect in Metals and Alloys (Cambridge University Press, Cambridge, 1972).CrossRef
    36.S. Adler, Phys. Rev. 177, 2426 (1969).ADS CrossRef
    37.J. S. Bell, and R. Jackiw, Nuovo Cimento A 60, 4 (1969).
    38.N. Xu, H. M. Weng, B. Q. Lv, C. Matt, J. Park, F. Bisti, V. N. Strocov, D. gawryluk, E. Pomjakushina, K. Conder, N. C. Plumb, M. Radovic, G. Autes, O. V. Yazyev, Z. Fang, X. Dai, G. Aeppli1, T. Qian, J. Mesot, H. Ding, and M. Shi, [arXiv: 1507.03983].
    39.H. J. Kim, K. S. Kim, J. F. Wang, M. Sasaki, N. Satoh, A. Ohnishi, M. Kitaura, M. Yang, and L. Li, Phys. Rev. Lett. 111, 246603 (2013).ADS CrossRef
    40.G. P. Mikitik, Y. V. Sharlai, Phys. Rev. Lett. 82, 2147 (1999).ADS CrossRef
    41.G. P. Mikitik, Y. V. Sharlai, Phys. Rev. Lett. 93, 106403 (2004).ADS CrossRef
    42.K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Nature 438, 197 (2005).ADS CrossRef
    43.Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Nature 438, 201 (2005).ADS CrossRef
    44.H. Murakawa, M. S. Bahramy, M. Tokunaga, Y. Kohama, C. Bell, Y. Kaneko, N. Nagaosa, H. Y. Hwang, and Y. Tokura, Science 342, 1490 (2013).ADS CrossRef
  • 作者单位:JianHua Du (1)
    HangDong Wang (2)
    Qin Chen (1)
    QianHui Mao (1)
    Rajwali Khan (1)
    BinJie Xu (1)
    YuXing Zhou (1)
    YanNan Zhang (1)
    JinHu Yang (2)
    Bin Chen (2)
    ChunMu Feng (1)
    MingHu Fang (1) (3)

    1. Department of Physics, Zhejiang University, Hangzhou, 310027, China
    2. Department of Physics, Hangzhou Normal University, Hangzhou, 310036, China
    3. Collaborative Innovation Center of Advanced Microstructures, Nanjing, 210093, China
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Chinese Library of Science
    Mechanics, Fluids and Thermodynamics
    Physics
  • 出版者:Science China Press, co-published with Springer
  • ISSN:1869-1927
文摘
After successfully growing single-crystal TaP, we measured its longitudinal resistivity (ρ xx ) and Hall resistivity (ρ yx ) at magnetic fields up to 9 T in the temperature range of 2-300 K. At 8 T, the magnetoresistance (MR) reached 3.28 × 105% at 2 K, 176% at 300 K. Neither value appeared saturated. We confirmed that TaP is a hole-electron compensated semimetal with a low carrier concentration and high hole mobility of μ h=3.71 × 105 cm2/V s, and found that a magnetic-field-induced metal-insulator transition occurs at room temperature. Remarkably, because a magnetic field (H) was applied in parallel to the electric field (E), a negative MR due to a chiral anomaly was observed and reached -3000% at 9 T without any sign of saturation, either, which is in contrast to other Weyl semimetals (WSMs). The analysis of the Shubnikov-de Haas (SdH) oscillations superimposed on the MR revealed that a nontrivial Berry’s phase with a strong offset of 0.3958, which is the characteristic feature of charge carriers enclosing a Weyl node. These results indicate that TaP is a promising candidate not only for revealing fundamental physics of the WSM state but also for some novel applications.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700