Chaperone Therapy for GM2 Gangliosidosis: Effects of Pyrimethamine on β-Hexosaminidase Activity in Sandhoff Fibroblasts
详细信息    查看全文
  • 作者:Elena Chiricozzi ; Natalia Niemir ; Massimo Aureli…
  • 关键词:GM2 ; gangliosidosis ; Sandhoff disease ; β ; hexosaminidase ; Pharmacological Chaperone ; Pyrimethamine ; Cultured fibroblasts
  • 刊名:Molecular Neurobiology
  • 出版年:2014
  • 出版时间:August 2014
  • 年:2014
  • 卷:50
  • 期:1
  • 页码:159-167
  • 全文大小:376 KB
  • 参考文献:1. Winchester B, Velloidi A, Young E (2000) The molecular basis of lysosomal storage diseases and their treatment. Biochem Soc Trans 28:150-54
    2. Futerman AH, van Meer G (2004) The cell biology of lysosomal storage disorders. Nat Rev Mol Cell Biol 5:554-65 CrossRef
    3. Kolter T, Sandhoff K (2006) Sphingolipid metabolism diseases. Biochim Biophys Acta 1758:2057-079 CrossRef
    4. Conzelmann E, Sandhoff K (1983) Partial enzyme deficiencies: residual activities and the development of neurological disorders. Dev Neurosci 6:58-1 CrossRef
    5. Sonnino S, Prinetti A (2012) Membrane domains and the “lipid raft-concept. Curr Med Chem 20:4-1
    6. Meikle PJ, Hopwood JJ, Calague AE, Carey WF (1999) Prevalence of lysosomal storage disorders. JAMA 281:249-54 CrossRef
    7. Gravel RA, Kaback MM, Proia RL, Sandhoff K, Suzuki K, Suzuki K (2001) The GM2 gangliosidoses. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular bases of inherited disease, 8th edn. McGraw-Hill, New York pp, pp 3827-876
    8. Leinekugel P, Michel S, Conzelmann E, Sandhoff K (1992) Quantitative correlation between the residual activity of β-hexosaminidase A and arysulfatase A and the severity of the resulting lysosomal storage disease. Hum Genet 88:513-23 CrossRef
    9. Jeyakumar M, Dwek RA, Butters TD, Platt FM (2005) Storage solutions: treating lysosomal disorders of the brain. Nat Rev Neurosci 6:1-2
    10. Sillence DJ, Platt FM (2003) Storage disease: new insights into sphingolipid functions. Trends Cell Biol 13:195-03 CrossRef
    11. Grabowski GA, Beutler E (2001) Gaucher disease. In: Scriver C, Beaudet A, Sly W, Valle D (eds) The Metabolic and Molecular Bases of Inherited Diseases, 8th edn. McGraw-Hill, New York pp, pp 3635-668
    12. Ratko TA, Marbella A, Godfrey S, Aronson N. (2013) Enzyme-Replacement Therapies for Lysosomal Storage Diseases. Technical Brief. No. 12. (Prepared by Blue Cross and Blue Shield Association Technology Evaluation Center Evidence-based Practice Center under Contract No. 290-2007-10058-I.) Rockville, MD: Agency for Healthcare Research and Quality. January www.effectivehealthcare.ahrq.gov/reports/final.cfm
    13. Bearpark TM, Stirling JL (1978) A difference in the specificities of human liver N-acetyl-beta-hexosaminidase A and B detected by their activities towards glycosaminoglycan oligosaccharides. Biochem J 173:997-000
    14. Hou EY, Tse R, Mahuran DJ (1996) Direct determination of the substrate specificity of the alpha-active site in heterodimeric beta-hexosaminidase A. Biochemistry 35:3963-969 CrossRef
    15. Kytzia HJ, Sandhoff K (1985) Evidence for two different active sites on human beta-hexosaminidase A. Interaction of GM2 activator protein with beta-hexosaminidase A. J Biol Chem 260:7568-572
    16. Kolter T, Sandhoff K (2006) Sphingolipid metabolism disease. BBA-Biomembranes 1758:2057-079 CrossRef
    17. Bateman KS, Cherney MM, Mahuran DJ, Tropak M, James NG (2011) Crystal structure of β-hexosaminidase B in complex with pyrimethamine, a potential pharmacological chaperone. J Med Chem 54:1421-429 CrossRef
    18. Mahuran DJ (1999) Biochemical consequences of mutations causing the GM2 gangliosidosis. Biochem Biophys Acta 1455:105-38
    19. Tropak MB, Mahuran DJ (2007) Lending a helping hand, screening chemical libraries for compounds that enhance β-hexosaminidase A activity in GM2 gangliosidosis cells. FEBS J 274:4951-961 CrossRef
    20. Beck M (2010) Therapy for lysosomal storage disorders. IUMB Life 62:33-0
    21. Butters TD, Dwek BR, Platt FM (2005) Imino sugar inhibitors for treating the lysosomal glycosphingolipidoses. Glycobiology 15:43R-2R CrossRef
    22. Yoshiyuki Suzuki Y, Ogawa S, Sakakibara Y (2009) Chaperone therapy for neuronopathic lysosomal diseases: competitive inhibitors as chemical chaperones for enhancement of mutant enzyme activities. Perspect Med Chem 3:7-9
    23. Leandro P, Gomes CM (2008) Protein misfolding in conformational disorders: rescue of folding defects and chemical chaperoning. Mini Rev Med Chem 8:901-11 CrossRef
    24. Arakawa T, Ejima D, Kita Y, Tsumoto K (2006) Small molecule pharmacological chaperones: from thermodynamic stabilization to pharmacological drugs. Biochim Biophys Acta 1764:1677-687 CrossRef
    25. Ulloa-Aguirre A, Janovick JA, Brothers SP, Conn PM (2004) Pharmacological rescue of conformationally-defective proteins: implications for the treatment of human disease. Traffic 5:821-37 CrossRef
    26. Desnick R, Schuchmann EH (2002) Enzyme replacement and enhancement therapies: lessons from lysosomal disorders. Nat Rev Genet 3:954-66 CrossRef
    27. Desnick RJ (2004) Enzyme replacement and enhancement therapies for lysosomal diseases. J Inherit Metab Dis 27:385-10 CrossRef
    28. Maegawa GH, Tropak M, Buttner J, Stockley T, Kok F, Clarke JT, Mahuran DJ (2007) Pyrimethamine as a potential pharmacological chaperone for late-onset forms of GM2 gangliosidosis. J Biol Chem 282:9150-161 CrossRef
    29. Kacher Y, Futerman AH (2006) Genetic diseases of sphingolipid metabolism: pathological mechanisms and therapeutic options. Febs Lett 580:5510-517 CrossRef
    30. Fan JQ (2003) A contradictory treatment for lysosomal storage disorders: inhibitors enhance mutant enzyme activity. Trends Pharmacol Sci 24:355-60 CrossRef
    31. Pastores GM, Barnett NL (2005) Current and emerging therapies for the lysosomal storage disorders. Exp Opin Emerg Drugs 10:891-02 CrossRef
    32. Sawkar AR, Cheng WC, Beutler E, Wong CH, Balch WE, Kelly JW (2002) Chemical chaperones increase the cellular activity of N370S beta-glucosidase: a therapeutic strategy for Gaucher disease. Proc Natl Acad Sci U S A 99:15428-5433 CrossRef
    33. Tropak MB, Reid SP, Guiral M, Withers SG, Mahuran DJ (2004) Pharmacological enhancement of beta-hexosaminidase activity in fibroblast from adult Tay-Sachs and Sandhoff patients. J Biol Chem 279:13478-3487 CrossRef
    34. Tominaga L, Ogawa Y, Taniguchi M, Ohno K, Matsuda J, Oshima A, Suzuki Y, Nanba E (2001) Galactonojirimycin derivatives restore mutant human beta-galactosidase activities expressed in fibroblasts from enzyme-deficient knockout mouse. Brain Dev 23:284-87 CrossRef
    35. Fan JQ, Ishii S, Asano N, Suzuki Y (1999) Accelerated transport and maturation of lysosomal alpha-galactosidase A in Fabry lymphoblasts by an enzyme inhibitor. Nat Med 5:112-15 CrossRef
    36. Matsuda J, Suzuki O, Oshima A, Yamamoto Y, Noguchi A, Takimoto K et al (2003) Chemical chaperone therapy for brain pathology in GM1-gangliosidosis. Proc Natl Acad Sci U S A 100:15912-5917 CrossRef
    37. Leport C, Chêne G, Morlat P, Luft BJ, Rousseau F, Pueyo S, Hafner R, Miro J, Aubertin J, Salamon R, Vildé JL (1996) Pyrimethamine for primary prophylaxis of toxoplasmic encephalitis in patients with human immunodeficiency virus infection: a double-blind, randomized trial. ANRS 005-ACTG 154 Group Members. Agence Nationale de Recherche sur le SIDA. AIDS Clinical Trial Group. J Infect Dis 173:91-7 CrossRef
    38. Weiss LM, Luft BJ, Tanowitz HB, Wittner M (1992) Pyrimethamine concentrations in serum during treatment of acute murine experimental toxoplasmosis. Am J Trop Med Hyg 46:288-91
    39. Buxton ILO (2006) The Pharmacological Basis of Therapeutics 11th ed. McGraw-Hill Books, New York
    40. Weiss LM, Harris C, Berger M, Tanowitz HB, Wittner M (1988) Pyrimethamine concentrations in serum and cerebrospinal fluid during treatment of acute Toxoplasma encephalitis in patients with AIDS. J Infect Dis 157:580-83 CrossRef
    41. Kongsaeree P, Khongsuk P, Leartsakulpanich U, Chitnumsub P, Tarnchimpoo B, Walkinshaw M, Yuthavong Y (2005) Crystal structure of dihydrofolate reductase from Plasmodium vivax: pyrimethamine displacement linked with mutation-induced resistance. Proc Natl Acad Sci U S A 282:13046-3051 CrossRef
    42. Tropak MB, Bukovac SW, Rigat BA, Yonekawa S, Wakarchuk W, Mahuran DJ (2010) A sensitive fluorescence-based assay for monitoring GM2 ganglioside hydrolysis in live patient cells and their lysates. Glycobiology 20:356-65 CrossRef
    43. Clarke JT, Mahuran DJ, Sathe S, Kolodny EH, Rigat BA, Raiman JA, Tropak MB (2011) An open-label phase I/II clinical trial of pyrimethamine for the treatment of patients affected with chronic GM2 gangliosidosis (Tay-Sachs or Sandhoff variants). Mol Genet Metab 102:6-2 CrossRef
    44. Osher E, Fattal-Valevki A, Sagie L, Urshanski N, Amir-Levi Y, Katzburg S, Peleg L, Lerman-Sagie T, Zimran A, Elstein D, Navon R, Stern N, Valevski A (2011) Pyrimethamine increases β-hexosaminidase A activity in patients with late onset Tay Sachs. Mol Genet Metab 102:356-63 CrossRef
    45. Bayleran J, Hechtman P, Saray W (1984) Synthesis of 4-methylumbelliferyl-beta- / d-N-acetylglucosamine-6-sulfate and its use in classification of GM2 gangliosidosis genotypes. Clin Chim Acta 143:73-9 CrossRef
    46. Neote K, Mcinnes B, Mahuran DJ, Gravel RA (1990) Structure and distribution of an Alu-type deletion mutation in Sandhoff disease. J Clin Invest 86:1524-531 CrossRef
    47. Zampieri S, Cattarossi S, Oller Ramirez AM, Rosano C, Lourenco CM et al (2012) Sequence and copy number analyses of HEXB gene in patients affected by Sandhoff disease : functional characterization of 9 novel variants. PLoS One 7:415-16 CrossRef
    48. Arfi A, Bourgoin C, Basso L, Emiliani C, Tancini B, Chigorno V, Li YT, Orlacchio A, Poenaru L, Sonnino S, Caillaud C (2005) Bicistronic lentiviral vector corrects β-hexosaminidase deficiency in transduced and cross-corrected human Sandhoff fibroblasts. Neurobiol Dis 20:583-93 CrossRef
    49. Kaback MM, Desnick RJ (2001) Tay-Sachs disease: from clinical description to molecular defect. Adv Genet 44:1- CrossRef
    50. Brown CA, Neote K, Leung A, Gravel RA, Mahuran DJ (1989) Introduction of the alpha subunit mutation associated with the B1 variant of Tay-Sachs disease into the beta subunit produces a beta-hexosaminidase B without catalytic activity. J Biol Chem 264:21705-1710
    51. Ribeiro MG, Sonin T, Pinto RA, Fontes A, Ribeiro H, Pinto E, Palmeira MM, Miranda MC (1996) Clinical, enzymatic, and molecular characterisation of a Portuguese family with a chronic form of GM2-gangliosidosis B1 variant. J Med Genet 33:341-43 CrossRef
    52. Mules EH, Hayflick S, Dowling CE, Kelly TE, Akerman BR, Gravel RA, Thomas GH (1992) Molecular basis of hexosaminidase A deficiency and pseudodeficiency in the Berks County Pennsylvania Dutch. Hum Mutat 1:298-02 CrossRef
    53. Paw BH, Moskowitz SM, Uhrhammer N, Wright N, Kaback MM, Neufeld EF (1990) Juvenile GM2 gangliosidosis caused by substitution of histidine for arginine at position 499 or 504 of the alpha-subunit of betahexosaminidase. J Biol Chem 265:9452-457
    54. Navon R, Kolodny EH, Mitsumoto H, Thomas GH, Proia RL (1990) Ashkenazi Jewish and not-Jewish adult GM2 gangliosidosis patients share a common genetic defect. Am J Hum Genet 46:817-21
    55. Akli S, Chomel JC, Lacorte JM, Bachner L, Poenaru A, Poenaru L (1993) Ten novel mutations in the HEXA gene in non-Jewish Tay-Sachs patients. Hum Mol Genet 2:61-7 CrossRef
    56. Matsuzawa F, Aikawa S, Sakuraba H, Lan HT, Tanaka A, Ohno K, Sugimoto Y, Ninomiya H, Doi H (2003) Structural basis of the GM2 gangliosidosis B variant. J Hum Genet 48:582-89 CrossRef
    57. Akerman BR, Zielenski J, Triggs-Raine BL, Prence EM, Natowicz MR, Lim-Steele JS, Kaback MM, Mules EH, Thomas GH, Clarke JTR, Gravel RA (1992) A mutation common in non-Jewish Tay-Sachs disease: frequency and RNA studies. Hum Muta 1:303-09 CrossRef
    58. Aryan H, Aryani O, Banihashemi K, Zaman T, Houshmand M (2012) Novel mutations in sandhoff disease: a molecular analysis among iranian cohort of infantile patients. Iran J Public Health 41:112-18
    59. Blumen SC, Bevan S, Abu-Mouch S, Negus D, Kahana M, Inzelberg R, Mazarib A, Mahamid A, Carasso RL, Slor H, Withers D, Nisipeanu P, Navon R, Reid E (2003) A locus for complicated hereditary spastic paraplegia maps to chromosome 1q24-q32. Ann Neurol 54:796-03 CrossRef
    60. Bolhuis PA, Ponne NJ, Bikker H, Baas F, Vianney De Jong JM (1993) Molecular basis of an adult form of Sandhoff disease: substitution of glutamine for arginine at position 505 of the beta-chain of betahexosaminidase results in a labile enzyme. Biochim Biophys Acta 1182:142-46 CrossRef
  • 作者单位:Elena Chiricozzi (1)
    Natalia Niemir (2)
    Massimo Aureli (1)
    Alessandro Magini (3)
    Nicoletta Loberto (1)
    Alessandro Prinetti (1)
    Rosaria Bassi (1)
    Alice Polchi (3)
    Carla Emiliani (3)
    Catherine Caillaud (2) (4)
    Sandro Sonnino (1)

    1. Department of Medical Biotechnology and Translational Medicine, University of Milano, Via F.lli Cervi 93, 20090, Segrate, Italy
    2. Sorbonne Paris Cité, Faculté de Médecine Necker, INSERM U845, Université Paris Descartes, Paris, France
    3. Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy
    4. Service de Biochimie et Génétique Moléculaire, Groupe Hospitalier Cochin-Broca-Hotel Dieu, Assistance Publique-H?pitaux de Paris, Paris, France
  • ISSN:1559-1182
文摘
Sphingolipidoses are inherited genetic diseases due to mutations in genes encoding proteins involved in the lysosomal catabolism of sphingolipids. Despite a low incidence of each individual disease, altogether, the number of patients involved is relatively high and resolutive approaches for treatment are still lacking. The chaperone therapy is one of the latest pharmacological approaches to these storage diseases. This therapy allows the mutated protein to escape its natural removal and to increase its quantity in lysosomes, thus partially restoring the metabolic functions. Sandhoff disease is an autosomal recessive inherited disorder resulting from β-hexosaminidase deficiency and characterized by large accumulation of GM2 ganglioside in brain. No enzymatic replacement therapy is currently available, and the use of inhibitors of glycosphingolipid biosynthesis for substrate reduction therapy, although very promising, is associated with serious side effects. The chaperone pyrimethamine has been proposed as a very promising drug in those cases characterized by a residual enzyme activity. In this review, we report the effect of pyrimethamine on the recovery of β-hexosaminidase activity in cultured fibroblasts from Sandhoff patients.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700