Biosorption of 4-chlorophenol by dried anaerobic digested sludge: artificial neural network modeling, equilibrium isotherm, and kinetic study
详细信息    查看全文
  • 作者:V. R. Fanaie ; M. Karrabi ; M. M. Amin…
  • 关键词:Biosorption ; 4 ; chlorophenol ; Digested sludge ; Kinetics ; Isotherms
  • 刊名:International Journal of Environmental Science and Technology
  • 出版年:2017
  • 出版时间:January 2017
  • 年:2017
  • 卷:14
  • 期:1
  • 页码:37-48
  • 全文大小:
  • 刊物主题:Environment, general; Environmental Science and Engineering; Environmental Chemistry; Waste Water Technology / Water Pollution Control / Water Management / Aquatic Pollution; Soil Science & Conservati
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1735-2630
  • 卷排序:14
文摘
In this study, dried anaerobic digested sludge (DADS) was utilized to remove 4-chlorophenol (4-CP) from aqueous solutions. Batch biosorption experiments were carried out to investigate the effects of physicochemical parameters such as pH, contact time, biosorbent dosage, and initial concentration. Artificial neural network (ANN) was then used to predict the removal efficiency of the process. The comparison between predicted and experimental results provided a high degree of determination coefficient (R2 = 0.98), indicating that the model could predict the biosorption efficiency with reasonable accuracy. Biosorption data were successfully described by the Freundlich isotherm and pseudofirst-order model. The Weber–Morris kinetic model indicated that intraparticle diffusion was not the only rate-controlling step, and other mechanisms may be involved in the biosorption process. The optimum pH was detected to be 3 for DADS. By increasing contact time and biosorbent dosage, the removal efficiency of 4-CP increased. Also, a decreasing trend was observed when initial concentrations were increased. The findings suggested that the results predicted by ANN are very close to the experimental values, and DADS as an available adsorbent can efficiently remove 4-CP from aqueous solutions.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700