Curcumin inhibits monocyte chemoattractant protein-1 expression and enhances cholesterol efflux by suppressing the c-Jun N-terminal kinase pathway in macrophage
详细信息    查看全文
  • 作者:Tingrong Liu ; Chen Li ; Haige Sun ; Tiantian Luo ; Ying Tan ; Di Tian…
  • 关键词:Curcumin ; c ; Jun N ; terminal kinase ; Monocyte chemoattractant protein ; 1 ; Cholesterol efflux ; Macrophages
  • 刊名:Inflammation Research
  • 出版年:2014
  • 出版时间:October 2014
  • 年:2014
  • 卷:63
  • 期:10
  • 页码:841-850
  • 全文大小:1,617 KB
  • 参考文献:1. Grove EL. Antiplatelet effect of aspirin in patients with coronary artery disease. Dan Med J. 2012;59(9):B4506.
    2. Williams KJ, Tabas I. The response-to-retention hypothesis of early atherogenesis. Arterioscler Thromb Vasc Biol. 1995;15(5):551-1. CrossRef
    3. Mestas J, Ley K. Monocyte-endothelial cell interactions in the development of atherosclerosis. Trends Cardiovasc Med. 2008;18(6):228-2. CrossRef
    4. Lusis AJ. Atherosclerosis. Nature. 2000;407(6801):233-1. CrossRef
    5. Deshmane SL, Kremlev S, Amini S, Sawaya BE. Monocyte chemoattractant protein-1 (MCP-1): an overview. J Interferon Cytokine Res. 2009;29(6):313-6. CrossRef
    6. Reckless J, Rubin EM, Verstuyft JB, Metcalfe JC, Grainger DJ. Monocyte chemoattractant protein-1 but not tumor necrosis factor- is correlated with monocyte infiltration in mouse lipid lesions. Circulation. 1999;99(17):2310-. CrossRef
    7. Chobanian AV. Single risk factor intervention may be inadequate to inhibit atherosclerosis progression when hypertension and hypercholesterolemia coexist. Hypertension. 1991;18(2):130-. CrossRef
    8. Fogelman AM, Shechter I, Seager J, Hokom M, Child JS, Edwards PA. Malondialdehyde alteration of low density lipoproteins leads to cholesteryl ester accumulation in human monocyte-macrophages. Proc Natl Acad Sci USA. 1980;77(4):2214-. CrossRef
    9. Wang GP, Deng ZD, Ni J, Qu ZL. Oxidized low density lipoprotein and very low density lipoprotein enhance expression of monocyte chemoattractant protein-1 in rabbit peritoneal exudate macrophages. Atherosclerosis. 1997;133(1):31-. CrossRef
    10. Clarke MC, Talib S, Figg NL, Bennett MR. Vascular smooth muscle cell apoptosis induces interleukin-1-directed inflammation: effects of hyperlipidemia-mediated inhibition of phagocytosis. Circ Res. 2010;106(2):363-2. CrossRef
    11. Zhong Y, Liu T, Guo Z. Curcumin inhibits ox-LDL-induced MCP-1 expression by suppressing the p38MAPK and NF-kappaB pathways in rat vascular smooth muscle cells. Inflamm Res. 2012;61(1):61-. CrossRef
    12. Ouchi N, Kihara S, Arita Y, Okamoto Y, Maeda K, Kuriyama H, et al. Adiponectin, an adipocyte-derived plasma protein, inhibits endothelial NF-κB signaling through a cAMP-dependent pathway. Circulation. 2000;102(11):1296-01. CrossRef
    13. Kyriakis JM, Avruch J. Mammalian MAPK signal transduction pathways activated by stress and inflammation: a 10-year update. Physiol Rev. 2012;92(2):689-37. CrossRef
    14. Chang L, Karin M. Mammalian MAP kinase signalling cascades. Nature. 2001;410(6824):37-0. CrossRef
    15. Keshet Y, Seger R. The MAP kinase signaling cascades: a system of hundreds of components regulates a diverse array of physiological functions. Methods Mol Biol. 2010;661:3-8. CrossRef
    16. Kaminska B. MAPK signalling pathways as molecular targets for anti-inflammatory therapy–from molecular mechanisms to therapeutic benefits. Biochim Biophys Acta. 2005;1754(1-):253-2. CrossRef
    17. Hall DJ, Bates ME, Guar L, Cronan M, Korpi N, Bertics PJ. The role of p38 MAPK in rhinovirus-induced monocyte chemoattractant protein-1 production by monocytic-lineage cells. J Immunol. 2005;174(12):8056-3. CrossRef
    18. Sodhi A, Biswas SK. Monocyte chemoattractant protein-1-induced activation of p42/44 MAPK and c-Jun in murine peritoneal macrophages: a potential pathway for macrophage activation. J Interferon Cytokine Res. 2002;22(5):517-6. CrossRef
    19. Matoba K, Kawanami D, Ishizawa S, Kanazawa Y, Yokota T, Utsunomiya K. Rho-kinase mediates TNF-alpha-induced MCP-1 expression via p38 MAPK signaling pathway in mesangial cells. Biochem Biophys Res Commun. 2010;402(4):725-0. CrossRef
    20. Kim S, Joo YE. Theaflavin inhibits LPS-induced IL-6, MCP-1, and ICAM-1 expression in bone marrow-derived macrophages through the blockade of NF-kappaB and MAPK signaling pathways. Chonnam Med J. 2011;47(2):104-0. CrossRef
    21. Li M, Wu ZM, Yang H, Huang SJ. NFkappaB and JNK/MAPK activation mediates the production of major macrophage- or dendritic cell-recruiting chemokine in human first trimester decidual cells in response to proinflammatory stimuli. J Clin Endocrinol Metab. 2011;96(8):2502-1. CrossRef
    22. Tang M, Wang Y, Han S, Guo S, Xu N, Guo J. Endogenous PGE(2) induces MCP-1 expression via EP4/p38 MAPK signaling in melanoma. Oncol Lett. 2013;5(2):645-0.
    23. Liu W, He P, Cheng B, Mei CL, Wang YF, Wan JJ. / Chlamydia pneumoniae disturbs cholesterol homeostasis in human THP-1 macrophages via JNK-PPARgamma dependent signal transduction pathways. Microbes Infect. 2010;12(14-5):1226-5. CrossRef
    24. Zhou X, Yin Z, Guo X, Hajjar DP, Han J. Inhibition of ERK1/2 and activation of liver X receptor synergistically induce macrophage ABCA1 expression and cholesterol efflux. J Biol Chem. 2010;285(9):6316-6. CrossRef
    25. Aggarwal BB, Sung B. Pharmacological basis for the role of curcumin in chronic diseases: an age-old spice with modern targets. Trends Pharmacol Sci. 2009;30(2):85-4. CrossRef
    26. Goel A, Kunnumakkara AB, Aggarwal BB. Curcumin as “Curecumin- from kitchen to clinic. Biochem Pharmacol. 2008;75(4):787-09. CrossRef
    27. Hong SW, Kim MR, Lee EY, Kim JH, Kim YS, Jeon SG, et al. Extracellular vesicles derived from / Staphylococcus aureus induce atopic dermatitis-like skin inflammation. Allergy. 2011;66(3):351-. CrossRef
    28. Liao S, Xia J, Chen Z, Zhang S, Ahmad A, Miele L, et al. Inhibitory effect of curcumin on oral carcinoma CAL-27 cells via suppression of Notch-1 and NF-kappaB signaling pathways. J Cell Biochem. 2011;112(4):1055-5. CrossRef
    29. Waly MI, Al Moundhri MS, Ali BH. Effect of curcumin on cisplatin- and oxaliplatin-induced oxidative stress in human embryonic kidney (HEK) 293 cells. Ren Fail. 2011;33(5):518-3. CrossRef
    30. Shin SK, Ha TY, McGregor RA, Choi MS. Long-term curcumin administration protects against atherosclerosis via hepatic regulation of lipoprotein cholesterol metabolism. Mol Nutr Food Res. 2011;55(12):1829-0. CrossRef
    31. Zingg JM, Hasan ST, Cowan D, Ricciarelli R, Azzi A, Meydani M. Regulatory effects of curcumin on lipid accumulation in monocytes/macrophages. J Cell Biochem. 2012;113(3):833-0. CrossRef
    32. Schaffer M, Schaffer PM, Zidan J, Bar Sela G. Curcuma as a functional food in the control of cancer and inflammation. Curr Opin Clin Nutr Metab Care. 2011;14(6):588-7. CrossRef
    33. Shehzad A, Ha T, Subhan F, Lee YS. New mechanisms and the anti-inflammatory role of curcumin in obesity and obesity-related metabolic diseases. Eur J Nutr. 2011;50(3):151-1. CrossRef
    34. Kannan Y, Sundaram K, Aluganti Narasimhulu C, Parthasarathy S, Wewers MD. Oxidatively modified low density lipoprotein (LDL) inhibits TLR2 and TLR4 cytokine responses in human monocytes but not in macrophages. J Biol Chem. 2012;287(28):23479-8. CrossRef
    35. Varela LM, Ortega-Gomez A, Lopez S, Abia R, Muriana FJ, Bermudez B. The effects of dietary fatty acids on the postprandial triglyceride-rich lipoprotein/apoB48 receptor axis in human monocyte/macrophage cells. J Nutr Biochem. 2013;24(12):2031-. CrossRef
    36. Wang S, Zhou H, Feng T, Wu R, Sun X, Guan N, et al. beta-Glucan attenuates inflammatory responses in oxidized LDL-induced THP-1 cells via the p38 MAPK pathway. Nutr Metab Cardiovasc Dis. 2014;24(3):248-5. CrossRef
    37. Zhao SP, Yang J, Li J, Dong SZ, Wu ZH. Effect of niacin on LXRalpha and PPARgamma expression and HDL-induced cholesterol efflux in adipocytes of hypercholesterolemic rabbits. Int J Cardiol. 2008;124(2):172-. CrossRef
    38. Rosenson RS, Brewer HB Jr, Davidson WS, Fayad ZA, Fuster V, Goldstein J, et al. Cholesterol efflux and atheroprotection: advancing the concept of reverse cholesterol transport. Circulation. 2012;125(15):1905-9. CrossRef
    39. Ye D, Lammers B, Zhao Y, Meurs I, Van Berkel TJ, Van Eck M. ATP-binding cassette transporters A1 and G1, HDL metabolism, cholesterol efflux, and inflammation: important targets for the treatment of atherosclerosis. Curr Drug Targets. 2011;12(5):647-0. CrossRef
    40. Zanotti I, Favari E, Bernini F. Cellular cholesterol efflux pathways: impact on intracellular lipid trafficking and methodological considerations. Curr Pharm Biotechnol. 2012;13(2):292-02. CrossRef
    41. Steinberg D. Low density lipoprotein oxidation and its pathobiological significance. J Biol Chem. 1997;272(34):20963-. CrossRef
    42. Maziere C, Trecherel E, Ausseil J, Louandre C, Maziere JC. Oxidized low density lipoprotein induces cyclin A synthesis. Involvement of ERK, JNK and NFkappaB. Atherosclerosis. 2011;218(2):308-3. CrossRef
    43. Rios FJ, Koga MM, Ferracini M, Jancar S. Co-stimulation of PAFR and CD36 is required for oxLDL-induced human macrophages activation. PLoS One. 2012;7(5):e36632. CrossRef
    44. Wu CC, Wang SH, Kuan II, Tseng WK, Chen MF, Wu JC, et al. OxLDL upregulates caveolin-1 expression in macrophages: role for caveolin-1 in the adhesion of oxLDL-treated macrophages to endothelium. J Cell Biochem. 2009;107(3):460-2. CrossRef
    45. Jing Q, Xin SM, Cheng ZJ, Zhang WB, Zhang R, Qin YW, et al. Activation of p38 mitogen-activated protein kinase by oxidized LDL in vascular smooth muscle cells: mediation via pertussis toxin-sensitive G proteins and association with oxidized LDL-induced cytotoxicity. Circ Res. 1999;84(7):831-. CrossRef
    46. Fang WB, Jokar I, Zou A, Lambert D, Dendukuri P, Cheng N. CCL2/CCR2 chemokine signaling coordinates survival and motility of breast cancer cells through Smad3 protein- and p42/44 mitogen-activated protein kinase (MAPK)-dependent mechanisms. J Biol Chem. 2012;287(43):36593-08. CrossRef
    47. Park SY, Jin ML, Kim YH, Kim Y, Lee SJ. Anti-inflammatory effects of aromatic-turmerone through blocking of NF-kappaB, JNK, and p38 MAPK signaling pathways in amyloid beta-stimulated microglia. Int Immunopharmacol. 2012;14(1):13-0. CrossRef
    48. Wang X, Li X, Ye L, Chen W, Yu X. Smad7 inhibits TGF-beta1-induced MCP-1 upregulation through a MAPK/p38 pathway in rat peritoneal mesothelial cells. Int Urol Nephrol. 2013;45(3):899-07.
    49. Wei L, Matsumoto H, Yamaguchi H. Propofol attenuates lipopolysaccharide-induced monocyte chemoattractant protein-1 production through p38 MAPK and SAPK/JNK in alveolar epithelial cells. J Anesth. 2013;27(3):366-3.
    50. Bhandary B, Lee GH, So BO, Kim SY, Kim MG, Kwon JW, et al. / Rubus coreanus inhibits oxidized-LDL uptake by macrophages through regulation of JNK activation. Am J Chin Med. 2012;40(5):967-8. CrossRef
    51. Meng Z, Yan C, Deng Q, Gao DF, Niu XL. Curcumin inhibits LPS-induced inflammation in rat vascular smooth muscle cells in vitro via ROS-relative TLR4-MAPK/NF-kappaB pathways. Acta Pharmacol Sin. 2013;34(7):901-1.
    52. Bonamassa B, Moschetta A. Atherosclerosis: lessons from LXR and the intestine. Trends Endocrinol Metab. 2013;24(3):120-. CrossRef
    53. Cheng LC, Su KH, Kou YR, Shyue SK, Ching LC, Yu YB, et al. alpha-Lipoic acid ameliorates foam cell formation via liver X receptor alpha-dependent upregulation of ATP-binding cassette transporters A1 and G1. Free Radic Biol Med. 2011;50(1):47-4. CrossRef
    54. Jessup W, Gelissen IC, Gaus K, Kritharides L. Roles of ATP binding cassette transporters A1 and G1, scavenger receptor BI and membrane lipid domains in cholesterol export from macrophages. Curr Opin Lipidol. 2006;17(3):247-7. CrossRef
    55. Zhao JF, Ching LC, Huang YC, Chen CY, Chiang AN, Kou YR, et al. Molecular mechanism of curcumin on the suppression of cholesterol accumulation in macrophage foam cells and atherosclerosis. Mol Nutr Food Res. 2012;56(5):691-01. CrossRef
  • 作者单位:Tingrong Liu (1)
    Chen Li (1)
    Haige Sun (1)
    Tiantian Luo (1)
    Ying Tan (1)
    Di Tian (1)
    Zhigang Guo (1)

    1. Department of Cardiology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, People’s Republic of China
  • ISSN:1420-908X
文摘
Objective To investigate the effect of curcumin on monocyte chemoattractant protein 1 (MCP-1) production and reverse cholesterol transport (RCT) in macrophage induced by oxidation low-density lipoprotein (ox-LDL), and to identify the signal pathways involved. Methods The macrophages were treated with ox-LDL and various concentrations of curcumin simultaneously. The MCP-1 expression was measured by enzyme-linked immunosorbent assay. The apoAI-mediated cholesterol efflux was measured by 3H-cholesterol-labeled counting radioactivity. The activation of intracellular signaling pathways was studied by Western blotting. Results Curcumin decreased the production of MCP-1 induced by ox-LDL in macrophages. MCP-1 expression was restrained by the inhibition of c-Jun N-terminal kinase (JNK) pathway (SP600125) and NF-κB pathway (BAY11-7082). Curcumin suppressed the phosphorylation of JNK and activation of NF-κB. Curcumin also enhanced RCT via up-regulating the expression of liver X receptor alpha (LXRα), ATP-binding cassette transporter A1 (ABCA1) and scavenger receptor class B type I (SR-BI). Additionally, the inhibition of JNK (SP600125) increased cholesterol efflux and increased the expression of ABCA1 and SR-BI, but had no effect on LXRα. Conclusion Curcumin suppresses MCP-1 production induced by ox-LDL via the JNK pathway and NK-κB pathway, while enhances cholesterol efflux in macrophage via suppressing the JNK pathway and activating the LXR–ABCA1/SR-BI pathway, which indicate that the vascular protective effect of curcumin is related to anti-inflammation and anti-atherosclerosis.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700