18β-Glycyrrhetinic acid potentiates Hsp90 inhibition-induced apoptosis in human epithelial ovarian carcinoma cells via activation of death receptor and mitochondrial pathway
详细信息    查看全文
  • 作者:Jae Chon Yang (1)
    Soon Chul Myung (2)
    Wonyong Kim (3)
    Chung Soo Lee (1) leecs@cau.ac.kr
  • 关键词:Hsp90 inhibition – 18β ; glycyrrhetinic acid – Epithelial ovarian adenocarcinoma cell lines – Apoptosis ; related proteins – Promoting effect
  • 刊名:Molecular and Cellular Biochemistry
  • 出版年:2012
  • 出版时间:November 2012
  • 年:2012
  • 卷:370
  • 期:1-2
  • 页码:209-219
  • 全文大小:578.5 KB
  • 参考文献:1. Goetz MP, Toft DO, Ames MM, Erlichman C (2003) The Hsp90 chaperone complex as a novel target for cancer therapy. Ann Oncol 14:1169–1176. doi:
    2. Mahalingam D, Swords R, Carew JS, Nawrocki ST, Bhalla K, Giles FJ (2009) Targeting HSP90 for cancer therapy. Br J Cancer 100:1523–1529. doi:
    3. Whitesell L, Lindquist SL (2005) HSP90 and the chaperoning of cancer. Nat Rev Cancer 5:761–772. doi:
    4. Moser C, Lang SA, Stoeltzing O (2009) Heat-shock protein 90 (Hsp90) as a molecular target for therapy of gastrointestinal cancer. Anticancer Res 29:2031–2042
    5. Reikvam H, Ersvaer E, Bruserud O (2009) Heat shock protein 90—a potential target in the treatment of human acute myelogenous leukemia. Curr Cancer Drug Targets 9:761–776
    6. Hwang M, Moretti L, Lu B (2009) HSP90 inhibitors: multi-targeted antitumor effects and novel combinatorial therapeutic approaches in cancer therapy. Curr Med Chem 16:3081–3092
    7. Fedier A, Stuedii A, Fink D (2005) Presence of MLH1 protein aggravates the potential of the HSP90 inhibitor radicicol to sensitize tumor cells to cisplatin. Int J Oncol 27:1697–1705
    8. Ohba S, Hirose Y, Yoshida K, Yazaki T, Kawase T (2010) Inhibition of 90-kD heat shock protein potentiates the cytotoxicity of chemotherapeutic agents in human glioma cells. J Neurosurg 112:33–42. doi:
    9. Powers MV, Workman P (2006) Targeting of multiple signalling pathways by heat shock protein 90 molecular chaperone inhibitors. Endocr Relat Cancer Suppl 1:S125–S135. doi:
    10. Shibata S (2000) A drug over the millennia: pharmacognosy, chemistry, and pharmacology of licorice. Yakugaku Zasshi 120:849–862
    11. Jeong HG, You HJ, Park SJ, Moon AR, Chung YC, Kang SK, Chun HK (2002) Hepatoprotective effects of 18β-glycyrrhetinic acid on carbon tetrachloride-induced liver injury: inhibition of cytochrome P450 2E1 expression. Pharmacol Res 46:221–227. doi:
    12. Matsui S, Matsumoto H, Sonoda Y, Ando K, Aizu-Yokota E, Sato T, Kasahara T (2004) Glycyrrhizin and related compounds down-regulate production of inflammatory chemokines IL-8 and eotaxin 1 in a human lung fibroblast cell line. Int Immunopharmacol 15:1633–1644. doi:
    13. Agarwal MK, Iqbal M, Athar M (2005) Inhibitory effect of 18β-glycyrrhetinic acid on 12-O-tetradecanoyl phorbol-13-acetate-induced cutaneous oxidative stress and tumor promotion in mice. Redox Rep 10:151–157. doi:
    14. Hoever G, Baltina L, Michaelis M, Kondratenko R, Baltina L, Tolstikov GA, Doerr HW, Cinatl J Jr (2005) Antiviral activity of glycyrrhizic acid derivatives against SARS-coronavirus. J Med Chem 48:1256–1259. doi:
    15. Hibasami H, Iwase H, Yoshioka K, Takahashi H (2005) Glycyrrhizin induces apoptosis in human stomach cancer KATO III and human promyelotic leukemia HL-60 cells. Int J Mol Med 16:233–236
    16. Hibasami H, Iwase H, Yoshioka K, Takahashi H (2006) Glycyrrhetinic acid (a metabolic substance and aglycon of glycyrrhizin) induces apoptosis in human hepatoma, promyelotic leukemia and stomach cancer cells. Int J Mol Med 17:215–219
    17. Lee CS, Kim YJ, Lee MS, Han ES, Lee SJ (2008) 18β-Glycyrrhetinic acid induces apoptotic cell death in SiHa cells and exhibits a synergistic effect against antibiotic anti-cancer drug toxicity. Life Sci 41:481–489. doi:
    18. Ishiwata S, Nakashita K, Ozawa Y, Niizeki M, Nozaki S, Tomioka Y, Mizugaki M (1999) Fas-mediated apoptosis is enhanced by glycyrrhizin without alteration of caspase-3-like activity. Biol Pharm Bull 22:1163–1166
    19. Yoshikawa M, Toyohara M, Ueda S, Shiroi A, Takeuchi H, Nishiyama T, Yamada T, Fukui H, Ishizaka S (1999) Glycyrrhizin inhibits TNF-induced, but not Fas-mediated, apoptosis in the human hepatoblastoma line HepG2. Biol Pharm Bull 22:951–955
    20. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63. doi:
    21. Oberhammer FA, Pavelka M, Sharma S, Tiefenbacher R, Purchio AF, Bursch W, Schulte-Hermann R (1992) Induction of apoptosis in cultured hepatocytes and in regressing liver by transforming growth factor β1. Proc Natl Acad Sci USA 89:5408–5412
    22. Wu H, Rao GN, Dai B, Singh P (2000) Autocrine gastrins in colon cancer cells up-regulate cytochrome c oxidase Vb and down-regulate efflux of cytochrome c and activation of caspase-8. J Biol Chem 275:32491–32498. doi:
    23. Dai Y, Liu M, Tang W, Li Y, Lian J, Lawrence TS, Xu L (2009) A Smac-mimetic sensitizes prostate cancer cells to TRAIL-induced apoptosis via modulating both IAPs and NF-κB. BMC Cancer 9:392. doi:
    24. Berthier A, Lemaire-Ewing S, Prunet C, Monier S, Athias A, Bessede G, Pais de Barros JP, Laubriet A, Gambert P, Lizard G, Néel D (2004) Involvement of a calcium-dependent dephosphorylation of BAD associated with the localization of Trpc-1 within lipid rafts in 7-ketocholesterol-induced THP-1 cell apoptosis. Cell Death Differ 11:897–905. doi:
    25. Chipuk JE, Green DR (2006) Dissecting p53-dependent apoptosis. Cell Death Differ 13:994–1002. doi:
    26. Armstrong JS (2006) Mitochondria: a target for cancer therapy. Br J Pharmacol 147:239–248. doi:
    27. Sano M (2001) Radicicol and geldanamycin prevents neurotoxic effects of anti-cancer drugs on cultured embryonic sensory neurons. Neuropharmacology 40:947–953. doi:
    28. Sohn MJ, Noh HJ, Yoo ID, Kim WG (2007) Protective effect of radicicol against LPS/IFN-γ-induced neuronal cell death in rat cortical neuron-glia cultures. Life Sci 80:1706–1712. doi:
    29. Hu W, Kavanagh JJ (2003) Anticancer therapy targeting the apoptotic pathway. Lancet Oncol 4:721–729. doi:
    30. Camins A, Pallas M, Silvestre JS (2008) Apoptotic mechanisms involved in neurodegenerative diseases: experimental and therapeutic approaches. Methods Find Exp Clin Pharmacol 30:43–65. doi:
    31. Curreli F, Friedman-Kien AE, Flore O (2005) Glycyrrhizic acid alters Kaposi sarcoma-associated herpesvirus latency, triggering p53-mediated apoptosis in transformed B lymphocytes. J Clin Investig 115:642–652. doi:
    32. H?gberg T, Glimelius B, Nygren P (2001) A systematic overview of chemotherapy effects in ovarian cancer. Acta Oncol 40:340–360
    33. Lee CS, Yang JC, Kim YJ, Jang ER, Kim W, Myung SC (2010) 18β-Glycyrrhetinic acid potentiates apoptotic effect of trichostatin A on human epithelial ovarian carcinoma cell lines. Eur J Pharmacol 649:354–361. doi:
    34. Wiman KG (2006) Strategies for therapeutic targeting of the p53 pathway in cancer. Cell Death Differ 13:921–926. doi:
  • 作者单位:1. Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, 156-756 South Korea2. Department of Urology, Chung-Ang University Hospital, Seoul, 156-755 South Korea3. Department of Microbiology, College of Medicine, Chung-Ang University, Seoul, 156-756 South Korea
  • ISSN:1573-4919
文摘
The Hsp90 inhibition has been shown to induce apoptosis in various cancer cells. The licorice compounds may enhance the anti-cancer drug effect. However, effect of the licorice compounds on the Hsp90 inhibition-induced apoptosis in ovarian cancer cells has not been studied. To assess the ability of 18β-glycyrrhetinic acid to promote apoptosis, we examined whether 18β-glycyrrhetinic acid potentiated the Hsp90 inhibitor-induced apoptosis in the human epithelial ovarian carcinoma cell lines OVCAR-3 and SK-OV-3. Radicicol and geldanamycin induced a decrease in Bid, Bcl-2, Bcl-xL and survivin protein levels, an increase in Bax levels, the mitochondrial transmembrane potential loss, cytochrome c release, activation of caspases (-8, -9, and -3), cleavage of PARP-1, and an increase in the tumor suppressor p53 levels. 18β-Glycyrrhetinic acid enhanced Hsp90 inhibitor-induced apoptosis-related protein activation, nuclear damage, and cell death. The results suggest that 18β-glycyrrhetinic acid may potentiate the Hsp90 inhibition-induced apoptosis in ovarian carcinoma cell lines via the activation of the caspase-8- and Bid-dependent pathways and the mitochondria-mediated cell death pathway, leading to activation of caspases. Combination of Hsp90 inhibitors and 18β-glycyrrhetinic acid may confer a benefit in the treatment of epithelial ovarian adenocarcinoma.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700