Biosensor for bisphenol A leaching from baby bottles using a glassy carbon electrode modified with DNA and single walled carbon nanotubes
详细信息    查看全文
  • 作者:Xiaohua Jiang (1)
    Wengjie Ding (1)
    Chonglin Luan (1)
    Qingqing Ma (2)
    Zhiyong Guo (2)
  • 关键词:Bisphenol A leaching ; DNA ; Singed walled carbon nanotubes ; Biosensor ; Determination
  • 刊名:Microchimica Acta
  • 出版年:2013
  • 出版时间:12 - August 2013
  • 年:2013
  • 卷:180
  • 期:11
  • 页码:1021-1028
  • 全文大小:220KB
  • 参考文献:1. Staples CA, Dorn PB, Klecka GM, O’Block ST, Harris LR (1998) A review of the environmental fate, effects, and exposures of bisphenol A. Chemosphere 36:2149-173 CrossRef
    2. Biedermann-Berm S, Grob K (2009) Release of bisphenol A from polycarbonate baby bottles: water hardness as the most relevant factor. Eur Food Res Technol 228:679-84 CrossRef
    3. Kovaaic P (2010) How safe is bisphenol A? Fundamentals of toxicity: metabolism, electron transfer and oxidative stress. Med Hypotheses 75:1- CrossRef
    4. Bezaee M, Yamini Y, Shariati S, Esrafili A, Shamsipur M (2009) Dispersive liquid-liquid microextraction combined with high-performance liquid chromatography-UV detection as a very simple, rapid and sensitive method for the determination of bisphenol A in water samples. J Chromatorgr A 1216:1511-514 CrossRef
    5. García-Prieto A, Lunar ML, Rubio S, Pérez-Bendito D (2008) Determination of urinary bisphenol A by coacervative microextraction and liquid chromatography-fluorescence detection. Anal Chim Acta 630:19-7 CrossRef
    6. Inoue K, Kato K, Yoshimura Y, Makino T, Nakazawa H (2000) Determination of bisphenol A in human serum by high-performance liquid chromatography with multi-electrode electrochemical detection. J Chromatogr B 749:17-3 CrossRef
    7. Gómez MJ, Agüera A, Mezcua M, Hurtado J, Mocholí F, Fernández-Alba AR (2007) Simultaneous analysis of neutral and acidic pharmaceuticals as well as related compounds by gas chromatography-tandem mass spectrometry in wastewater. Talanta 73:314-20 CrossRef
    8. Kuramitz H, Nakata Y, Kwwasaki MS, Tanaka S (2001) Electrochemical oxidation of bisphenol A: Application to the removal of bishphenol A using a crbon fiber electrode. Chemosphere 45:37-3 CrossRef
    9. Xue F, Wu JJ, Chu HQ, Mei ZL, Ye YK, Liu J, Zhang R, Peng CF, Zheng L, Chen W (2013) Electrochemical aptasensor for the determination of bisphenol A in drinking water. Microchim Acta 180:109-15 CrossRef
    10. Gao Y, Cao Y, Yang DG, Luo XJ, Tang YM, Li HM (2012) Sensitivity and selectivity determination of bisphenol A using SWCNT-CD conjugate modified glassy carbon electrode. J Hazard Mater 199-00:111-18 CrossRef
    11. Portaccio M, Tuoro DD, Arduini F, Lepore M, Mita DG, Diano N, Mita L, Moscone D (2010) A thionine-modified carbon paste amperometric biosensor for catechol and bisphenol A determination. Biosens Bioelectron 25:2003-008 CrossRef
    12. Wang F, Yang J, Wu K (2009) Mesoporous silica-based electrochemical sensor for sensitive determination of environmental hormone bisphenol A. Anal Chim Acta 638:23-8 CrossRef
    13. Yin H, Zhou Y, Ai S (2009) Preparation and characteristic of cobalt phthalocyanine modified carbon paste electrode for bisphenol A detection. J Electroanal Chem 626:80-8 CrossRef
    14. Li Q, Li H, Du GF, Xu ZH (2010) Electrochemical detection of bisphenol A mediated by [Ru(bpy)3]2+ on an ITO Electrode. J Hazard Mater 180:703-09 CrossRef
    15. Niu XL, Yang W, Wang GY, Ren J, Guo H, Gao JZ (2013) A novel electrochemical sensor of bisphenol A based on stacked graphene nanofibers/gold nanoparticles composite modified glassy carbon electrode. Electrochimica Acta 98:167-75 CrossRef
    16. Li JH, Kuang DZ, Feng YL, Zhang FX, Liu MQ (2011) Voltammetric determination of bisphenol A in food package by a glassy carbon electrode modified with carboxylated multi-walled carbon nanotubes. Microchim Acta 172:379-86 CrossRef
    17. Poorahong S, Thammakhet C, Thavarungkul P, Limbut W, Numnuam A, Kanatharana P (2012) Amperometric sensor for detection of bisphenol A using a pencil graphite electrode modified with polyaniline nanorods and multiwalled carbon nanotubes. Microchim Acta 176:91-9 CrossRef
    18. Zheng ZX, Du YL, Wang ZH, Feng QL, Wang CM (2013) Pt/graphene-CNTs nanocomposite based electrochemical sensors for the determination of endocrine disruptor bisphenol A in thermal printing papers. Analyst 138:693-98 CrossRef
    19. Luo LQ, Liu JY, Wang ZX, Yang XR, Dong SJ, Wang EK (2001) Fabrication of layer-by-layer deposited multilayer films containing DNA and its interaction with methyl green. Biophys Chem 94:11-2 CrossRef
    20. Pérez-López B, Merko?i A (2012) Carbon nanotubes and graphene in analytical sciences. Microchim Acta 179:1-6 CrossRef
    21. Jagota A, Diner BA, Boussaad S, Zheng M (2005) Carbon nanotube-biomolecule interactions: Applications in carbon nanotubes separation and biosensing. Nanosci Nanotechnol 10:253-71
    22. Wang YW, Liu H, Wang F, Gao YM (2012) Electrochemical oxidation behavior of methotrexate at DNA/SWCNT/Nafion composite film-modified glassy carbon electrode. J Solid State Electrochem 16:3227-235 CrossRef
    23. Vega D, Agüí L, Cortés G, Yá?ez-Sede?o P, Pingarrón JM (2007) Electrochemical detection of phenolic estrogenic compounds at carbong nanotube-modified electrodes. Talanta 71:1031-038 CrossRef
    24. Zheng YQ, Yang CZ, Pu WH, Zhang JD (2009) Carbon nanotube-based DNA biosensor for monitoring phenolic pollutants. Microchim Acta 166:21-6 CrossRef
    25. Wang YL, Liu L, Li MG, Xu SD, Gao F (2011) Multifunctional carbon nanotubes for direct electrochemistry of glucose bioassay. Biosens Bioelectron 30:107-11 CrossRef
    26. Wang MZ, Zheng JB (2012) Direct electrochemistry and electrocatalysis of hemoglobin immobilized on the functionalized grapheme-carbon nanotube composite film. J Electrochem Soc 159:F150–F156 CrossRef
    27. Reichmann ME, Rice SA, Thomas CA, Doty P (1954) A further examination of the molecular weight and size of desoxypentose nucleic acid. J Am Chem Soc 76:3047-053 CrossRef
    28. Ballesteros-Gómez A, Rubio S, Pérez-Bendito D (2009) Analytical methods for the determination of bisphenol A in food. J Chromatogr A 1216:449-69 CrossRef
    29. Laviron E (1979) General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J Electroanal Chem 101:19-8 CrossRef
    30. Ngundi MM, Sadik OA, Yamaguchi T, Suye S (2003) First comparative reaction mechanisms of β-estradiol and selected environmental hormones in a redox environment. Elecrochem Commun 5:61-7 CrossRef
    31. Bard AJ, Faulkner LR (1980) Electrochemical methods: Fundamentals and Applications. Wiley, New York, chapter 6
    32. Carter MT, Rodriguez M, Bard AJ (1989) Votammetric studies of the interaction of metal chelates with DNA. 2. Tris-Chelated complexes of cobalt (III) and iron (II) with 1, 10-phenanthroline and 2, 2-bipyridine. J Am Chem Soc 111:8901-911 CrossRef
  • 作者单位:Xiaohua Jiang (1)
    Wengjie Ding (1)
    Chonglin Luan (1)
    Qingqing Ma (2)
    Zhiyong Guo (2)

    1. School of Applied Chemistry and Biological Technology, Shenzhen Polytechnic, Shenzhen, Guangdong, 518055, China
    2. Faculty of Materials Science and Chemical Engineering, The State Key Laboratroy Base of Novel Functional Materials and Preparation Science, Ningbo University, Ningbo, Zhejiang, 315211, China
文摘
We have developed a biosensor for highly sensitive and selective determination of the endocrinic disruptor bisphenol A (BPA). It is based on glassy carbon electrode modified with calf thymus DNA and a composited prepared from single walled carbon nanotubes (SWNT) and Nafion. The interaction between BPA and DNA was studied by voltammetry. The binding constant was determined to be 3.55?×-03?M?, and the binding site has a length of 4.3 base pairs. These electrochemical studies provide further information for a better understanding of the toxicity and carcinogenicity of BPA. Under optimal conditions, the biosensor displays a linear electrochemical response to BPA in the 10 nM to 20?μM concentration range, with a detection limit as low as 5.0 nM (at an S/N of 3). The method was successfully applied to the quantification of BPA in leachates from plastic baby bottles. Recoveries range from 94.0?% to 106.0?% which underpins the excellent performance of this SWNT-based DNA sensor. Figure A biosensor based on DNA and single walled carbon nanotubes modified glassy carbon electrode displays a linear electrochemical response to bisphenol A in the 10 nM to 20 μM concentration range, with a detection limit as low as 5.0 nM (at an S/N of 3).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700