Enhanced Fabry-Perot resonance in GaAs nanowires through local field enhancement and surface passivation
详细信息    查看全文
  • 作者:Shermin Arab (1)
    P. Duke Anderson (1)
    Maoqing Yao (1)
    Chongwu Zhou (1) (3)
    P. Daniel Dapkus (1) (2) (3)
    Michelle L. Povinelli (1)
    Stephen B. Cronin (1) (2)
  • 关键词:MOCVD ; GaAs ; nanowires ; photoluminescence ; Fabry ; Perot ; ionic liquid
  • 刊名:Nano Research
  • 出版年:2014
  • 出版时间:August 2014
  • 年:2014
  • 卷:7
  • 期:8
  • 页码:1146-1153
  • 全文大小:2,306 KB
  • 参考文献:1. Lin, C. X.; Povinelli, M. L. Optimal design of aperiodic, vertical silicon nanowire structures for photovoltaics. / Opt. Express 2011, / 19, A1148鈥揂1154. CrossRef
    2. Madaria, A. R.; Yao, M. Q.; Chi, C. Y.; Huang, N. F.; Lin, C. X.; Li, R. J.; Povinelli, M. L.; Dapkus, P. D.; Zhou, C. W. Toward optimized light utilization in nanowire arrays using scalable nanosphere lithography and selected area growth. / Nano Lett. 2012, / 12, 2839鈥?845. CrossRef
    3. Cui, Y.; Zhong, Z. H.; Wang, D. L.; Wang, W. U.; Lieber, C. M. High performance silicon nanowire field effect transistors. / Nano Lett. 2003, / 3, 149鈥?52. CrossRef
    4. Kelzenberg, M. D.; Boettcher, S. W.; Petykiewicz, J. A.; Turner-Evans, D. B.; Putnam, M. C.; Warren, E. L.; Spurgeon, J. M.; Briggs, R. M.; Lewis, N. S.; Atwater, H. A. Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications. / Nat. Mater. 2010, / 9, 239鈥?44.
    5. Liu, D. K.; You, L. X.; Chen, S. J.; Yang, X. Y.; Wang, Z.; Wang, Y. L.; Xie, X. M.; Jiang, M. H. Electrical characteristics of superconducting nanowire single photon detector. / IEEE Trans. Appl. Supercond. 2013, / 23, 2200804. CrossRef
    6. Schuck, C.; Pernice, W. H. P.; Tang, H. X. NbTiN superconducting nanowire detectors for visible and telecom wavelengths single photon counting on Si3N4 photonic circuits. / Appl. Phys. Lett. 2013, / 102, 051101. CrossRef
    7. Hasegawa, H. Control of surfaces and heterointerfaces of AlGaN/GaN system for sensor devices and their on-chip integration on nanostructures. / Curr. Appl. Phys. 2007, / 7, 318鈥?27. CrossRef
    8. Rosenberg, D.; Kerman, A. J.; Molnar, R. J.; Dauler, E. A. High-speed and high-efficiency superconducting nanowire single photon detector array. / Opt. Express 2013, / 21, 1440鈥?447. CrossRef
    9. Wu, H.; Xu, M.; Wang, Y. C.; Zheng, G. F. Branched Co3O4/Fe2O3 nanowires as high capacity lithium-ion battery anodes. / Nano Res. 2013, / 6, 167鈥?73. CrossRef
    10. Hua, B.; Motohisa, J.; Ding, Y.; Hara, S.; Fukui, T. Characterization of Fabry-P茅rot microcavity modes in GaAs nanowires fabricated by selective-area metal organic vapor phase epitaxy. / Appl. Phys. Lett. 2007, / 91, 131112. CrossRef
    11. Saxena, D.; Mokkapati, S.; Jagadish, C. Semiconductor nanolasers. / IEEE Photonics J. 2012, / 4, 582鈥?85. CrossRef
    12. Duan, X. F.; Huang, Y.; Agarwal, R.; Lieber, C. M. Single-nanowire electrically driven lasers. / Nature 2003, / 421, 241鈥?45. CrossRef
    13. Chu, S.; Wang, G. P.; Zhou, W. H.; Lin, Y. Q.; Chernyak, L.; Zhao, J. Z.; Kong, J. Y.; Li, L.; Ren, J. J.; Liu, J. L. Electrically pumped waveguide lasing from ZnO nanowires. / Nat. Nanotechnol. 2011, / 6, 506鈥?10. CrossRef
    14. Hua, B.; Motohisa, J.; Kobayashi, Y.; Hara, S.; Fukui, T. Single GaAs/GaAsP coaxial core-shell nanowire lasers. / Nano Lett. 2009, / 9, 112鈥?16. CrossRef
    15. Yang, L.; Motohisa, J.; Fukui, T.; Jia, L. X.; Zhang, L.; Geng, M. M.; Chen, P.; Liu, Y. L. Fabry-P茅rot microcavity modes observed in the micro-photoluminescence spectra of the single nanowire with InGaAs/GaAs heterostructure. / Opt. Express 2009, / 17, 9337鈥?346. CrossRef
    16. Chang, C.-C.; Chi, C.-Y.; Yao, M. Q.; Huang, N. F.; Chen, C.-C.; Theiss, J.; Bushmaker, A. W.; LaLumondiere, S.; Yeh, T.-W.; Povinelli, M. L.; et al. Electrical and optical characterization of surface passivation in GaAs nanowires. / Nano Lett. 2012, / 12, 4484鈥?489. CrossRef
    17. Offsey, S. D.; Woodall, J. M.; Warren, A. C.; Kirchner, P. D.; Chappell, T. I.; Pettit, G. D. Unpinned (100) GaAs surfaces in air using photochemistry. / Appl. Phys. Lett. 1986, / 48, 475鈥?77. CrossRef
    18. Yablonovitch, E.; Sandroff, C. J.; Bhat, R.; Gmitter, T. Nearly ideal electronic-properties of sulfide coated GaAs surfaces. / Appl. Phys. Lett. 1987, / 51, 439鈥?41. CrossRef
    19. Wilmsen, C. W.; Geib, K. M.; Shin, J.; Iyer, R.; Lile, D. L.; Pouch, J. J. The sulfurized InP surface. / J. Vac. Sci. Technol. B, 1989, / 7, 851鈥?53. CrossRef
    20. Yao, M. Q.; Madaria, A. R.; Chi, C. Y.; Huang, N. F.; Lin, C. X.; Povinelli, M. L.; Dapkus, P. D.; Zhou, C. W. Scalable synthesis of vertically aligned, catalyst-free gallium arsenide nanowire arrays: Towards optimized optical absorption. In / Proc. SPIE 8373, Micro- and Nanotechnology Sensors, Systems, and Applications IV, Baltimore, Maryland, USA, 2012, pp 837314. CrossRef
    21. Sheldon, M. T.; Carissa, N. E.; Harry, A. A. GaAs passivation with trioctylphosphine sulfide for enhanced solar cell efficiency and durability. / Adv. Energy Mater. 2012, / 2, 339鈥?44. CrossRef
    22. Demichel, O.; Heiss, M.; Bleuse, J.; Mariette, H.; i Morral, A. F. Impact of surfaces on the optical properties of GaAs nanowires. / Appl. Phys. Lett. 2010, / 97, 201907. CrossRef
    23. Perera, S.; Fickenscher, M. A.; Jackson, H. E.; Smith, L. M.; Yarrison-Rice, J. M.; Joyce, H. J.; Gao, Q.; Tan, H. H.; Jagadish, C.; Zhang, X.; Zou, J. Nearly intrinsic exciton lifetimes in single twin-free GaAs/AlGaAs core-shell nanowire heterostructures. / Appl. Phys. Lett. 2008, / 93, 053110. CrossRef
    24. Alarc贸n-Llad贸, E.; Mayer, M. A.; Boudouris, B. W.; Segalman, R. A.; Miller, N.; Yamaguchi, T.; Wang, K.; Nanishi, Y.; Haller, E. E.; Ager, J. W. PN junction rectification in electrolyte gated Mg-doped InN. / Appl. Phys. Lett. 2011, / 99, 102106. CrossRef
  • 作者单位:Shermin Arab (1)
    P. Duke Anderson (1)
    Maoqing Yao (1)
    Chongwu Zhou (1) (3)
    P. Daniel Dapkus (1) (2) (3)
    Michelle L. Povinelli (1)
    Stephen B. Cronin (1) (2)

    1. Department of Electrical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
    3. Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, 90089, USA
    2. Department of Physics, University of Southern California, Los Angeles, CA, 90089, USA
  • ISSN:1998-0000
文摘
We report substantial improvements in the photoluminescence (PL) efficiency and Fabry-Perot (FP) resonance of individual GaAs nanowires through surface passivation and local field enhancement, enabling FP peaks to be observed even at room temperature. For bare GaAs nanowires, strong FP resonance peaks can be observed at 4 K, but not at room temperature. However, depositing the nanowires on gold substrates leads to substantial enhancement in the PL intensity (5X) and 3.7X to infinite enhancement of FP peaks. Finite-difference time-domain (FDTD) simulations show that the gold substrate enhances the PL spectra predominately through enhanced absorption (11X) rather than enhanced emission (1.3X), predicting a total PL enhancement of 14X in the absence of non-radiative recombination. Despite the increased intensity of the FP peaks, lower Q factors are observed due to losses associated with the underlying gold substrate. As a means of reducing the non-radiative recombination in these nanowires, the surface states in the nanowires can be passivated by either an ionic liquid (1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMIM TFSI)) or an AlGaAs surface layer to achieve up to 12X enhancement of the photoluminescence intensity and observation of FP peaks at room temperature without a gold substrate.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700