Evaluation of the third- and fourth-generation GOCE Earth gravity field models with Australian terrestrial gravity data in spherical harmonics
详细信息    查看全文
  • 作者:Moritz Rexer (1) (2)
    Christian Hirt (1)
    Roland Pail (2)
    Sten Claessens (1)
  • 关键词:GOCE ; Global gravity field model ; DIR ; TIM ; Spherical harmonic analysis ; Coefficient transformation method ; Meissl scheme
  • 刊名:Journal of Geodesy
  • 出版年:2014
  • 出版时间:April 2014
  • 年:2014
  • 卷:88
  • 期:4
  • 页码:319-333
  • 全文大小:2,274 KB
  • 参考文献:1. Abdalla A, Fashir H, Ali A, Fairhead D (2012) Validation of recent GOCE/GRACE geopotential models over Khartoum state—Sudan. J Geod Sci 2:88-7. doi:10.2478/v10156-011-0035-6
    2. Andersen O, Knudsen P, Berry P (2009) The DNSC08GRA global marine gravity field from double retracked satellite altimetry. J Geod 84:191-99. doi:10.1007/s00190-009-0355-9 CrossRef
    3. Badura T (2006) Gravity field analysis from satellite orbit information applying the energy integral approach. PhD thesis, Graz University of Technology
    4. Bouman J, Fuchs M (2012) GOCE gravity gradients versus global gravity field models. Geophys J Int 189:846-50. doi:10.1111/j.1365-246X.2012.05428.x CrossRef
    5. Bruinsma S, Lemoine J, Biancale R, Valès N (2010a) CNES/GRGS 10-day gravity field models (release 2) and their evaluation. Adv Space Res 45(4):587-01. doi:10.1016/j.asr.2009.10.012 CrossRef
    6. Bruinsma S, Marty J, Balmino G, Biancale R, F?rste C, Abrikosov O, Neumayer H (2010b) GOCE gravity field recovery by means of the direct numerical method. In: Lacoste-Francis H (ed) Proceedings of the ESA living planet symposium, 28 June- July, Bergen, ESA, Publication SP-686
    7. Chen J, Wilson C (2010) Assessment of degree-2 zonal gravitational changes from GRACE, earth rotation, climate models, and satellite laser ranging. In: Mertikas S (ed) Gravity, geoid and earth observation, vol 135. Springer, Berlin, pp 669-76. doi:10.1007/978-3-642-10634-7_88
    8. Claessens S (2006) Solutions to ellipsoidal boundary value problems for gravity field modelling. PhD thesis, Curtin University of Technology
    9. Claessens S, Featherstone W, Anjasmar I, Filmer M (2009) Is Australian data really validating EGM2008, or is EGM2008 just in/validating Australian data? In: Newton’s Bulletin Issue no 4, international association of geodesy and international gravity field service, pp 207-51
    10. Dahle C, Flechtner F, Gruber C, Knig D, Knig R, Michalak G, Neumayer K (2013) GFZ GRACE level-2 processing standards document for level-2 product release 0005: revised edition. GeoForschungsZentrum, Potsdam
    11. Driscoll J, Healy D (1994) Computing Fourier transforms and convolutions on the 2-sphere. Adv Appl Math 15(2):202-50. doi:10.1006/aama.1994.1008 CrossRef
    12. ESA (1999) Gravity field and steady-state ocean circulation mission. Report for the mission selection of the four candidate earth explorer missions (ESA SP-1233(1)), European Space Agency
    13. Featherstone W, Kirby J (2000) The reduction of aliasing in gravity anomalies and geoid heights using digital terrain data. Geophys Int 141:204-12 CrossRef
    14. Featherstone W, Kirby J, Hirt C, Filmer M, Claessens S, Brown N, Hu G, Johnston G (2010) The AUSGeoid model of the Australian height datum. J Geod 85(3):133-50 CrossRef
    15. Forsberg R, Kenyon S (2004) Gravity and geoid in the Arctic region—the Northern polar gap now filled. In: Proceedings of the 2nd GOCE User, Workshop, March 2004, Esrin
    16. Gerlach C, ?prlák M, Bentel K, Pettersen B (2013) Observation, validation, modeling—historical lines and recent results in Norwegian gravity field research. Kart og Plan 73(2):128-50
    17. Gruber T, Visser P, Ackermann C, Hosse M (2011) Validation of GOCE gravity field models by means of orbit residuals and geoid comparisons. J Geod 85(11):845-60. doi:10.1007/s00190-011-0486-7 CrossRef
    18. Gruber T, Rummel R, HPF-Team (2013) The 4th realease of GOCE gravity field models—overview and performance. In: Presentation at EGU general assembly 2013. http://www.iapg.bv.tum.de/mediadb/5533197/5533198/20130411_EGU_Gruber_GOCE.pdf
    19. Guimar?es G, Matos A, Blitzkow D (2012) An evaluation of recent GOCE geopotential models in Brazil. J Geod Sci 2:144-55. doi:10.2478/v10156-011-0033-8
    20. Hashemi Farahani H, Ditmar P, Klees R, Liu X, Zhao Q, Guo J (2013) Validation of static gravity field models using GRACE K-band ranging and GOCE gradiometry data. Geophys J Int 194:751-71. doi:10.1093/gji/ggt149 CrossRef
    21. Hirt C, Gruber T, Featherstone W (2011) Evaluation of the first GOCE static gravity field models using terrestrial gravity, vertical deflections and EGM2008 quasigeoid heights. J Geod 85:723-40 CrossRef
    22. Hirt C, Kuhn M, Featherstone W, G?ttl F (2012) Topographic/isostatic evaluation of new-generation GOCE gravity field models. J Geophys Res Solid Earth 117:B05407. doi:10.1029/2011JB008878
    23. Holmes S, Pavlis N (2008) EGM harmonic synthesis software. National Geospatial-Intelligence Agency. http://earth-info.nga.mil/GandG/wgs84/gravitymod/new_egm/new_egm.html
    24. HPF (2013a) Datasheet GO\_CONS\_GCF\_2 \_DIR\_R4. GFZ, GRGS, published at ICGEM
    25. HPF (2013b) Datasheet GO\_CONS\_GFC\_2 \_TIM\_R4. Graz University of Technology, University of Bonn, TU Mnchen, published at ICGEM
    26. Ihde J, Wilmes H, Müller J, Denker H, Voigt C, Hosse M (2010) Validation of satellite gravity field models by regional terrestrial data sets. In: Flechtner F, Gruber T, Gntner A, Mandea M, Rothacher M, Schne T, Wickert J (eds) System earth via geodetic-geophysical space techniques. Springer, Berlin, pp 277-96. doi:10.1007/978-3-642-10228-8_22
    27. Janák J, Pitoňák M (2011) Comparison and testing of GOCE global gravity models in Central Europe. J Geod Sci 1:333-47
    28. Jekeli C (1988) The exact transformation between ellipsoidal and spherical harmonic expansions. Manuscripta Geodaetica 13(2):106-13
    29. Kaula W (1966) Theory of satellite geodesy. Blaisdel, Waltham
    30. Lavallée D, Moore P, Clarke P, Petrie E, van Dam T, King M (2010) J2: an evaluation of new estimates from GPS, GRACE, and load models compared to SLR. Geophys Res Lett 37. doi:10.1029/2010GL045229
    31. Mayer-Gürr T, Eicker A, Ilk KH (2006) Gravity field recovery from GRACE-SST data of short arcs. In: Flury J, Rummel R, Reigber C, Rothacher M, Boedecker G, Schreiber U (eds) Observation of the earth system from space. Springer, Berlin, pp 131-48 CrossRef
    32. Mayer-Gürr T, Kurtenbach E, Eicker A (2010) ITG-Grace2010 gravity field model. http://www.igg.uni-bonn.de/apmg/index.php?id=itg-grace2010
    33. Metzler B, Pail R (2005) GOCE data processing: the spherical cap regularization approach. Studia Geophysica et Geodaetica 49(4):441-62. doi:10.1007/s11200-005-0021-5 CrossRef
    34. Migliaccio F, Reguzzoni M, Sanso F, Tscherning C, Veicherts M (2010), GOCE data analysis: the space-wise method approach and the first space-wise gravity field model. In: Proceedings of the ESA living planet symposium, 28 June- July, Bergen, ESA, Publication SP-686
    35. Moritz H (2000) Geodetic reference system 1980. J Geod 74(1):128-62 CrossRef
    36. Pail R, Goiginger H, Mayrhofer R, Schuh WD, Brockmann JM et al (2010) GOCE gravity field model derived from orbit and gradiometry data applying the Time-Wise Method. In: Lacoste-Francis H (ed) Proceedings of the ESA living planet symposium, 28 June- July, Bergen, ESA, Publication SP-686
    37. Pail R, Bruinsma S, Migliaccio F, F?rste C, Goiginger H, Schuh WD, H?ck E, Reguzzoni M, Brockmann JM, Abrikosov O, Veicherts M, Fecher T, Mayrhofer R, Krasbutter I, Sanso F, Tscherning CC (2011a) First GOCE gravity field models derived by three different approaches. J Geod 85(11):819-43. doi:10.1007/s00190-011-0467-x (special issue: “GOCE—the Gravity and Steady-state Ocean Circulation Explorer-
    38. Pail R, Goiginger H, Schuh W, H?ck E, Brockmann J, Fecher T, Mayer-Gürr T, Kusche J, J?ggi A, Rieser D, Gruber T (2011b) Combination of GOCE data with complementary gravity field information (GOCO). In: Proceedings of 4th international GOCE user workshop, Munich, 31st March 2011, ESA SP-696, Noordwijk
    39. Pail R, Fecher T, Murb?ck M, Rexer M, Stetter M, Gruber T, Stummer C (2012) Impact of GOCE L1b data reprocessing on GOCE-only and combined gravity field models. In: Studia Geophysica et Geodaetica. Springer, Berlin. doi:10.1007/s11200-012-1149-8
    40. Pavlis N, Holmes S, Kenyon S, Factor J (2012) The developement and evaluation of the Earth Gravitational Model 2008 (EGM2008). J Geophys Res 117. doi:10.1029/2011JB008916
    41. Rummel R, van Gelderen M (1995) Meissl scheme—spectral characteristics of physical geodesy. Manusrcipta Geodaetica 20:379-385
    42. Sneeuw N, van Gelderen M (1997) The polar gap. In: Geodetic boundary value problems in view of the one centimeter geoid. Lecture Notes in Earth Science, vol 65, pp 559-68
    43. ?prlák M, Gerlach C, Omang O, Pettersen B (2011) Comparison of GOCE derived satellite global gravity models with EGM2008, the OCTAS geoid and terrestrial gravity data: case study for Norway. In: Proceedings of the 4th international GOCE user workshop, Munich, 31st March 2011, ESA SP-696, Noordwijk
    44. ?prlák M, Gerlach C, Pettersen B (2012) Validation of GOCE global gravity field models using terrestrial gravity data in Norway. J Geod Sci 2(2):134-43
    45. Stummer C, Pail R, Fecher T (2011) Alternative method for angular rate determination within the GOCE gradiometer processing. J Geod 85(9):585-96 CrossRef
    46. Stummer C, Siemes C, Pail R, Frommknecht B, Floberghagen R (2012) Upgrade of the GOCE Level 1b gradiometer processor. Adv Space Res 49(4):739-52 CrossRef
    47. Szücz E (2012) Validation of GOCE time-wise gravity field models using GPS-levelling, gravity, vertical deflections and gravity gradients in Hungary. Civil Eng 56(1):3-1
    48. Tapley B, Reigber C (2001) The grace mission: status and future plans. In: AGU fall, meeting abstracts, vol 1
    49. Tapley B, Schutz B, Eanes R, Ries J, Watkins M (1993) LAGEOS laser ranging contributions to geodynamics, geodesy, and orbital dynamics. Geodyn Ser 24:147-73
    50. Torge W (2001) Geodesy, 3rd edn. Walter de Gruyter, Berlin
    51. Tscherning C, Arabelos D (2011) Gravity anomaly and gradient recovery from GOCE gradient data using LSC and comparisons with known ground data. In: Proceedings 4th International GOCE user workshop, Munich, 31st March 2011, ESA SP-696, Noordwijk
    52. Voigt C, Denker H (2011) Validation of goce gravity field models by astrogeodetic vertical deflections in germany. In: Proceedings of the 4th international GOCE user workshop, SP-696, ESA/ESTEC, The Netherrlands, vol 4
    53. Voigt C, Rülke A, Denker H, Ihde J, Liebsch G (2010) Validation of goce products by terrestrial data sets in Germany. In: Observation of the system earth from space, vol 17. Geotechnolgien, Potsdam
    54. Wang Y (1989) Downward continuation of the free-air gravity anomalies to the ellipsoid using the gradient solution, Poisson’s integral and terrain-correction—numerical comparison and computations. 4, Department of Geodetic Science and Surveying, Ohio State University
    55. Zwally H, Schutz B, Abdalati W, Abshire J, Bentley C, Brenner A, Bufton J et al (2002) ICESat’s laser measurement of polar ice, atmosphere, ocean, and land. J Geodyn 34:404-45
  • 作者单位:Moritz Rexer (1) (2)
    Christian Hirt (1)
    Roland Pail (2)
    Sten Claessens (1)

    1. Western Australian Centre for Geodesy, Curtin University of Technology, GPO Box U1987, Perth, WA, 6845, Australia
    2. Institute for Astronomical and Physical Geodesy, Technische Universit?t München, Arcisstrasse 21, 80333?, Munich, Germany
  • ISSN:1432-1394
文摘
In March 2013, the fourth generation of European Space Agency’s (ESA) global gravity field models, DIR4 (Bruinsma et al. in Proceedings of the ESA living planet symposium, 28 June- July, Bergen, ESA, Publication SP-686, 2010b) and TIM4 (Migliaccio et al. in Proceedings of the ESA living planet symposium, 28 June- July, Bergen, ESA, Publication SP-686, 2010), generated from the Gravity field and steady-state Ocean Circulation Explorer (GOCE) gravity observation satellite was released. We evaluate the models using an independent ground truth data set of gravity anomalies over Australia. Combined with Gravity Recovery and Climate Experiment (GRACE) satellite gravity, a new gravity model is obtained that is used to perform comparisons with GOCE models in spherical harmonics. Over Australia, the new gravity model proves to have significantly higher accuracy in the degrees below 120 as compared to EGM2008 and seems to be at least comparable to the accuracy of this model between degree 150 and degree 260. Comparisons in terms of residual quasi-geoid heights, gravity disturbances, and radial gravity gradients evaluated on the ellipsoid and at approximate GOCE mean satellite altitude ( $h=250$ ?km) show both fourth generation models to improve significantly w.r.t. their predecessors. Relatively, we find a root-mean-square improvement of 39 % for the DIR4 and 23 % for TIM4 over the respective third release models at a spatial scale of 100?km (degree 200). In terms of absolute errors, TIM4 is found to perform slightly better in the bands from degree 120 up to degree 160 and DIR4 is found to perform slightly better than TIM4 from degree 170 up to degree 250. Our analyses cannot confirm the DIR4 formal error of 1 cm geoid height (0.35 mGal in terms of gravity) at degree 200. The formal errors of TIM4, with 3.2 cm geoid height (0.9 mGal in terms of gravity) at degree 200, seem to be realistic. Due to combination with GRACE and SLR data, the DIR models, at satellite altitude, clearly show lower RMS values compared to TIM models in the long wavelength part of the spectrum (below degree and order 120). Our study shows different spectral sensitivity of different functionals at ground level and at GOCE satellite altitude and establishes the link among these findings and the Meissl scheme (Rummel and van Gelderen in Manusrcipta Geodaetica 20:379-85, 1995).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700