Spectral analysis of the Earth’s topographic potential via 2D-DFT: a new data-based degree variance model to degree 90,000
详细信息    查看全文
  • 作者:Moritz Rexer ; Christian Hirt
  • 关键词:Degree variance ; Omission error ; Discrete Fourier transform ; Ultra ; high resolution gravity ; GGMplus ; Spherical approximation ; Ellipsoidal approximation
  • 刊名:Journal of Geodesy
  • 出版年:2015
  • 出版时间:September 2015
  • 年:2015
  • 卷:89
  • 期:9
  • 页码:887-909
  • 全文大小:5,724 KB
  • 参考文献:Abrykosov O, F?rste C, Gruber C, Shako R, Barthelmes F (2012) Harmonic analysis of the DTU10 global gravity anomalies. In: Abbasi A, Giesen N (eds) EGU General Assembly Conference Abstracts, EGU General Assembly Conference Abstracts, vol 14, p 4945
    Balmino G, Vales N, Bonvalot S, Briais A (2012) Spherical harmonic modelling to ultra-high degree of Bouguer and Isostatic anomalies. J Geod 86(7):499-20. doi:10.-007/?s00190-011-0533-4 CrossRef
    Claessens S, Hirt C (2013) Ellipsoidal topographic potential—new solutions for spectral forward gravity modelling of topography with respect to a reference ellipsoid. J Geophys Res 118(11):5991-002. doi:10.-002/-013JB010457 CrossRef
    Dahlen FA, Simons FJ (2008) Spectral estimation on a sphere in geophysics and cosmology. Geophys J Int 147:774-07. doi:10.-111/?j.-365-246X.-008.-3854.?x CrossRef
    Farr T, Rosen P, Caro E, Crippen R, Duren R, Hensley S, Kobrick M, Paller M, Rodriguez E, Roth L, Seal D, Shaffer S, Shimada K, Umland J, Werner M, Oskin M, Burbank D, Alsdorf D (2007) The Shuttle Radar Topography Mission. Rev Geophys 45(RG2004). doi:10.-029/-005RG000183
    Flury J (2006) Short-wavelength spectral properties of the gravity field from a range of regional data sets. J Geod 79:624-40. doi:10.-007/?s00190-005-0011-y CrossRef
    Forsberg R (1984a) Local covariance functions and density distribution. OSU Report 356, Ohio State University
    Forsberg R (1984b) A study of terrain reductions, density anomalies and geophysical inversion methods in gravity field modelling. OSU Report 355, Ohio State University
    Grombein T, Luo X, Seitz K, Heck B (2014) A wavelet-based assessment of topographic-isostatic reductions for GOCE gravity gradients. Surv Geophys 1-4. doi:10.-007/?s10712-014-9283-1
    Gruber C, Abrikosov O (2014) High resolution spherical and ellipsoidal harmonic expansions by Fast Fourier Transform. Studia Geophysica et Geodaetica 58. doi:10.-007/?s11200-013-0578-3 (online first)
    Heller W, Jordan S (1976) A new self-consistent statistical gravity field model. In: Eos Trans. AGU Fall Meeting, San Francisco, vol 75, p 895
    Hirt C (2012) Efficient and accurate high-degree spherical harmonic synthesis of gravity field functionals at the Earth’s surface using the gradient approach. J Geod 86(9):729-44. doi:10.-007/?s00190-012-0050-y CrossRef
    Hirt C, Kuhn M (2012) Evaluation of high-degree series expansions of the topographic potential to higher-order powers. J Geophys Res Solid Earth 117. doi:10.-029/-2012JB009492
    Hirt C, Kuhn M (2014) A band-limited topographic mass distribution generates a full-spectrum gravity field—gravity forward modelling in the spectral and spatial domain revisited. J Geophys Res Solid Earth 119. doi:10.-002/-013JB010900
    Hirt C, Kuhn M, Claessens SJ, Pail R, Seitz K, Gruber T (2014) Study of the Earth’s short-scale gravity field using the ERTM2160 gravity model. Comput Geosci 73:71-0. doi:10.-016/?j.?cageo.-014.-9.-0 CrossRef
    Hirt C, Featherstone W, Marti U (2010) Combining EGM2008 and SRTM/DTM2006.0 residual terrain model data to improve quasigeoid computations in mountainous areas devoid of gravity data. J Geod 84(9):557-67. doi:10.-007/?s00190-010-0395-1 CrossRef
    Hirt C, Claessens S, Fecher T, Kuhn M, Pail R, Rexer M (2013) New ultra-high resolution picture of Earth’s gravity field. Geophys Res Lett 40(16):4279-283. doi:10.-002/?grl.-0838 CrossRef
    Holmes S, Pavlis N (2008) EGM Harmonic Synthesis Software. National Geospatial-Intelligence Agency. http://?earth-info.?nga.?mil/?GandG/?wgs84/?gravitymod/?newegm/?newegm.?html
    Jekeli C (1978) An investigation of two models for the degree variances of global covariance functions. OSU report 275, Department of Geodetic Science, Ohio State University
    Jekeli C, Yanh HJ, Kwon JH (2009) Evaluation of EGM08—globally and locally in South Korea. Newton’s Bull 38-9
    Jekeli C (2010) Correlation modeling of the gravity field in classical geodesy. In: Freeden W, Nashed M, Sonar T (eds) Handbook of the Geomathematics. Springer, Berlin Heidelberg. doi:10.-007/-78-3-642-01546-528
    Kaula W (1966) Theory of satellite geodesy. Blaisdel, Waltham
    Kuhn M, Seitz K (2005) Comparison of Newton’s integral in the space and frequency domains. In: Sanso F (ed) A window on the Future of Geodesy—IAG Symposia, vol 128, pp 386-91
    Mayer-Gürr T, Kurtenbach E, Eicker A (2010) ITG-Grace2010 gravity field model. www.?igg.?unibonn.?de/?apmg/?index.?php??id=?itg-grace2010
    Moritz H (1977) On the computation of a global covariance model. OSU 255, Department of Geodetic Science, Ohio State University
    Moritz H (2000) Geodetic reference system 1980. J Geod 74(1):128-62. doi:10.-007/?s001900050278 CrossRef
    Novak P (2010) Direct modelling of the gravitational field using harmonic series. Acta Geodyn Geomater 7(1):35-7
    Pail R, Goiginger H, Mayrhofer R, Schuh WD, Brockmann JM et al (2010) GOCE gravity field model derived from orbit
  • 作者单位:Moritz Rexer (1)
    Christian Hirt (1) (2)

    1. Institute for Astronomical and Physical Geodesy, Institute for Advanced Study, Technische Universit?t München, Munich, Germany
    2. Department of Spatial Sciences, The Institute for Geoscience Research, Western Australian Geodesy Group, Curtin University, Perth, Australia
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Earth sciences
    Geophysics and Geodesy
    Mathematical Applications in Geosciences
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-1394
文摘
Classical degree variance models (such as Kaula’s rule or the Tscherning-Rapp model) often rely on low-resolution gravity data and so are subject to extrapolation when used to describe the decay of the gravity field at short spatial scales. This paper presents a new degree variance model based on the recently published GGMplus near-global land areas 220 m resolution gravity maps (Geophys Res Lett 40(16):4279-283, 2013). We investigate and use a 2D-DFT (discrete Fourier transform) approach to transform GGMplus gravity grids into degree variances. The method is described in detail and its approximation errors are studied using closed-loop experiments. Focus is placed on tiling, azimuth averaging, and windowing effects in the 2D-DFT method and on analytical fitting of degree variances. Approximation errors of the 2D-DFT procedure on the (spherical harmonic) degree variance are found to be at the 10-0 % level. The importance of the reference surface (sphere, ellipsoid or topography) of the gravity data for correct interpretation of degree variance spectra is highlighted. The effect of the underlying mass arrangement (spherical or ellipsoidal approximation) on the degree variances is found to be crucial at short spatial scales. A rule-of-thumb for transformation of spectra between spherical and ellipsoidal approximation is derived. Application of the 2D-DFT on GGMplus gravity maps yields a new degree variance model to degree 90,000. The model is supported by GRACE, GOCE, EGM2008 and forward-modelled gravity at 3 billion land points over all land areas within the SRTM data coverage and provides gravity signal variances at the surface of the topography. The model yields omission errors of \(\sim \)9 mGal for gravity (\(\sim \)1.5 cm for geoid effects) at scales of 10 km, \(\sim \)4 mGal (\(\sim \)1 mm) at 2-km scales, and \(\sim \)2 mGal (\(\sim \)0.2 mm) at 1-km scales. Keywords Degree variance Omission error Discrete Fourier transform Ultra-high resolution gravity GGMplus Spherical approximation Ellipsoidal approximation

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700