In silico approaches to study mass and energy flows in microbial consortia: a syntrophic case study
详细信息    查看全文
  • 作者:Reed Taffs (1) (2)
    John E Aston (1) (2)
    Kristen Brileya (1) (2)
    Zackary Jay (1)
    Christian G Klatt (1)
    Shawn McGlynn (1)
    Natasha Mallette (1) (2)
    Scott Montross (1)
    Robin Gerlach (1) (2)
    William P Inskeep (1)
    David M Ward (1)
    Ross P Carlson (1) (2)
  • 刊名:BMC Systems Biology
  • 出版年:2009
  • 出版时间:December 2009
  • 年:2009
  • 卷:3
  • 期:1
  • 全文大小:1334KB
  • 参考文献:1. Falkowski PG, Fenchel T, Delong EF: g class="a-plus-plus">The microbial engines that drive Earth's biogeochemical cycles.g> / Science 2008,g class="a-plus-plus">320g>(5879)g class="a-plus-plus">:g>1034鈥?039. g/10.1126/science.1153213">CrossRef
    2. Kleerebezem R, van Loosdrecht MCM: g class="a-plus-plus">Mixed culture biotechnology for bioenergy production.g> / Curr Opin Biotechnol 2007,g class="a-plus-plus">18g>(3)g class="a-plus-plus">:g>207鈥?12. g/10.1016/j.copbio.2007.05.001">CrossRef
    3. Ward DM, Ferris MJ, Nold SC, Bateson MM: g class="a-plus-plus">A natural view of microbial biodiversity within hot spring cyanobacterial mat communities.g> / Microbiol Mol Biol Rev 1998,g class="a-plus-plus">62g>(4)g class="a-plus-plus">:g>1353鈥?370.
    4. Ward DM, Cohan FM, Bhaya D, Heidelberg JF, Kuhl M, Grossman A: g class="a-plus-plus">Genomics, environmental genomics and the issue of microbial species.g> / Heredity 2008,g class="a-plus-plus">100g>(2)g class="a-plus-plus">:g>207鈥?19. g/10.1038/sj.hdy.6801011">CrossRef
    5. Steunou AS, Jensen SI, Brecht E, Becraft ED, Bateson MM, Kilian O, Bhaya D, Ward DM, Peters JW, Grossman AR, / et al.: g class="a-plus-plus">Regulation of nif gene expression and the energetics of Ng> g class="a-plus-plus">2g> g class="a-plus-plus">fixation over the diel cycle in a hot spring microbial mat.g> / ISME J 2008,g class="a-plus-plus">2g>(4)g class="a-plus-plus">:g>364鈥?78. g/10.1038/ismej.2007.117">CrossRef
    6. Dillon JG, Fishbain S, Miller SR, Bebout BM, Habicht KS, Webb SM, Stahl DA: g class="a-plus-plus">High rates of sulfate reduction in a low-sulfate hot spring microbial mat are driven by a low level of diversity of sulfate-respiring microorganisms.g> / Appl Environ Microbiol 2007,g class="a-plus-plus">73g>(16)g class="a-plus-plus">:g>5218鈥?226. g/10.1128/AEM.00357-07">CrossRef
    7. Brock TD: g class="a-plus-plus">Thermophilic microorganisms and life at high temperatures.g> New York: Springer-Verlag 1978.
    8. Brock TD: g class="a-plus-plus">Life at high temperatures: evolutionary ecological and biochemical significance of organisms living in hot springs is discussed.g> / Science 1967,g class="a-plus-plus">158g>(3804)g class="a-plus-plus">:g>1012鈥?019. g/10.1126/science.158.3804.1012">CrossRef
    9. Bateson MM, Ward DM: g class="a-plus-plus">Photoexcretion and fate of glycolate in a hot spring cyanobacterial mat.g> / Appl Environ Microbiol 1988,g class="a-plus-plus">54g>(7)g class="a-plus-plus">:g>1738鈥?743.
    10. Nold SC, Ward DM: g class="a-plus-plus">Photosynthate partitioning and fermentation in hot spring microbial mat communities.g> / Appl Environ Microbiol 1996,g class="a-plus-plus">62g>(12)g class="a-plus-plus">:g>4598鈥?607.
    11. Steunou AS, Bhaya D, Bateson MM, Melendrez MC, Ward DM, Brecht E, Peters JW, K眉hl M, Grossman AR: g class="a-plus-plus">In situ analysis of nitrogen fixation and metabolic switching in unicellular thermophilic cyanobacteria inhabiting hot spring microbial mats.g> / Proc Natl Acad Sci USA 2006,g class="a-plus-plus">103g>(7)g class="a-plus-plus">:g>2398鈥?403. g/10.1073/pnas.0507513103">CrossRef
    12. Meer MTJ, Schouten S, Bateson MM, N眉bel U, Wieland A, K眉hl M, de Leeuw JW, Damste JSS, Ward DM: g class="a-plus-plus">Diel variations in carbon metabolism by green nonsulfur-like bacteria in alkaline siliceous hot spring microbial mats from Yellowstone National Park.g> / Appl Environ Microbiol 2005,g class="a-plus-plus">71g>(7)g class="a-plus-plus">:g>3978鈥?986. g/10.1128/AEM.71.7.3978-3986.2005">CrossRef
    13. Garrett R, Grisham CM: g class="a-plus-plus">Biochemistry.g> / 3 Edition Belmont, CA: Thomson Brooks/Cole 2005.
    14. Horton HR: g class="a-plus-plus">Principles of biochemistry.g> / 3 Edition Upper Saddle River, NJ: Prentice Hall 2002.
    15. Anderson KL, Tayne TA, Ward DM: g class="a-plus-plus">Formation and fate of fermentation products in hot spring cyanobacterial mats.g> / Appl Environ Microbiol 1987,g class="a-plus-plus">53g>(10)g class="a-plus-plus">:g>2343鈥?352.
    16. Konopka A: g class="a-plus-plus">Accumulation and utilization of polysaccharide by hot spring phototrophs during a light-dark transition.g> / FEMS Microbiol Ecol 1992,g class="a-plus-plus">102g>(1)g class="a-plus-plus">:g>27鈥?2. g/10.1111/j.1574-6968.1992.tb05792.x">CrossRef
    17. Sandbeck KA, Ward DM: g class="a-plus-plus">Fate of immediate methane precursors in low-sulfate, hot-spring algal-bacterial mats.g> / Appl Environ Microbiol 1981,g class="a-plus-plus">41g>(3)g class="a-plus-plus">:g>775鈥?82.
    18. Fr眉nd C, Cohen Y: g class="a-plus-plus">Diurnal cycles of sulfate reduction under oxic conditions in cyanobacterial mats.g> / Appl Environ Microbiol 1992,g class="a-plus-plus">58g>(1)g class="a-plus-plus">:g>70鈥?7.
    19. Begon M, Townsend CR, Harper JL: g class="a-plus-plus">Ecology: from individuals to ecosystems.g> / 4 Edition Malden, MA: Blackwell Pub 2006.
    20. Schuster S, Dandekar T, Fell DA: g class="a-plus-plus">Detection of elementary flux modes in biochemical networks: A promising tool for pathway analysis and metabolic engineering.g> / Trends Biotechnol 1999,g class="a-plus-plus">17g>(2)g class="a-plus-plus">:g>53鈥?0. g/10.1016/S0167-7799(98)01290-6">CrossRef
    21. Schuster S, Fell DA, Dandekar T: g class="a-plus-plus">A general definition of metabolic pathways useful for systematic organization and analysis of complex metabolic networks.g> / Nat Biotechnol 2000,g class="a-plus-plus">18g>(3)g class="a-plus-plus">:g>326鈥?32. g/10.1038/73786">CrossRef
    22. Schuster S, Hilgetag C: g class="a-plus-plus">On elementary flux modes in biochemical reaction systems at steady state.g> / Journal of Biological Systems 1994,g class="a-plus-plus">2g>(2)g class="a-plus-plus">:g>165鈥?82. g/10.1142/S0218339094000131">CrossRef
    23. Carlson RP: g class="a-plus-plus">Metabolic systems cost-benefit analysis for interpreting network structure and regulation.g> / Bioinformatics 2007,g class="a-plus-plus">23g>(10)g class="a-plus-plus">:g>1258鈥?264. g/10.1093/bioinformatics/btm082">CrossRef
    24. Carlson RP: g class="a-plus-plus">Decomposition of complex microbial behaviors into resource-based stress responses.g> / Bioinformatics 2009,g class="a-plus-plus">25g>(1)g class="a-plus-plus">:g>90鈥?7. g/10.1093/bioinformatics/btn589">CrossRef
    25. Kauffman KJ, Prakash P, Edwards JS: g class="a-plus-plus">Advances in flux balance analysis.g> / Curr Opin Biotechnol 2003,g class="a-plus-plus">14g>(5)g class="a-plus-plus">:g>491鈥?96. g/10.1016/j.copbio.2003.08.001">CrossRef
    26. Stephanopoulos GN, Aristidou AA, Nielsen JH: g class="a-plus-plus">Metabolic engineering: Principles and methodologies.g> San Diego: Academic Press 1998.
    27. Stolyar S, Van Dien S, Hillesland KL, Pinel N, Lie TJ, Leigh JA, Stahl DA: g class="a-plus-plus">Metabolic modeling of a mutualistic microbial community.g> / Mol Syst Biol 2007, g class="a-plus-plus">3:g>e92. g/10.1038/msb4100131">CrossRef
    28. Carlson RP, Fell DA, Srienc F: g class="a-plus-plus">Metabolic pathway analysis of a recombinant yeast for rational strain development.g> / Biotechnol Bioeng 2002,g class="a-plus-plus">79g>(2)g class="a-plus-plus">:g>121鈥?34. g/10.1002/bit.10305">CrossRef
    29. Fell DA, Small JR: g class="a-plus-plus">Fat synthesis in adipose tissue: An examination of stoichiometric constraints.g> / Biochem J 1986,g class="a-plus-plus">238g>(3)g class="a-plus-plus">:g>781鈥?86.
    30. Borenstein E, Feldman MW: g class="a-plus-plus">Topological signatures of species interactions in metabolic networks.g> / J Comput Biol 2009,g class="a-plus-plus">16g>(2)g class="a-plus-plus">:g>191鈥?00. g/10.1089/cmb.2008.06TT">CrossRef
    31. Janga SC, Babu MM: g class="a-plus-plus">Network-based approaches for linking metabolism with environment.g> / Genome Biol 2008,g class="a-plus-plus">9g>(11)g class="a-plus-plus">:g>239.
    32. Ma HW, Zeng AP: g class="a-plus-plus">Reconstruction of metabolic networks from genome data and analysis of their global structure for various organisms.g> / Bioinformatics 2003,g class="a-plus-plus">19g>(2)g class="a-plus-plus">:g>270鈥?77. g/10.1093/bioinformatics/19.2.270">CrossRef
    33. Ma HW, Zeng AP: g class="a-plus-plus">Phylogenetic comparison of metabolic capacities of organisms at genome level.g> / Molecular Phylogenetics and Evolution 2004,g class="a-plus-plus">31g>(1)g class="a-plus-plus">:g>204鈥?13. g/10.1016/j.ympev.2003.08.011">CrossRef
    34. Ma HW, Zeng AP: g class="a-plus-plus">The connectivity structure, giant strong component and centrality of metabolic networks.g> / Bioinformatics 2003,g class="a-plus-plus">19g>(11)g class="a-plus-plus">:g>1423鈥?430. g/10.1093/bioinformatics/btg177">CrossRef
    35. Klamt S, Stelling J: g class="a-plus-plus">Combinatorial complexity of pathway analysis in metabolic networks.g> / Molecular Biology Reports 2002,g class="a-plus-plus">29g>(1鈥?)g class="a-plus-plus">:g>233鈥?36. g/10.1023/A:1020390132244">CrossRef
    36. Amann RI, Ludwig W, Schleifer KH: g class="a-plus-plus">Phylogenetic Identification andg> g class="a-plus-plus">in situg> g class="a-plus-plus">Detection of Individual Microbial Cells without Cultivation.g> / Microbiological Reviews 1995,g class="a-plus-plus">59g>(1)g class="a-plus-plus">:g>143鈥?69.
    37. Terzer M, Stelling J: g class="a-plus-plus">Large-scale computation of elementary flux modes with bit pattern trees.g> / Bioinformatics 2008,g class="a-plus-plus">24g>(19)g class="a-plus-plus">:g>2229鈥?235. g/10.1093/bioinformatics/btn401">CrossRef
    38. Schuster S, Pfeiffer T, Moldenhauer F, Koch I, Dandekar T: g class="a-plus-plus">Exploring the pathway structure of metabolism: decomposition into subnetworks and application to Mycoplasma pneumoniae.g> / Bioinformatics 2002,g class="a-plus-plus">18g>(2)g class="a-plus-plus">:g>351鈥?61. g/10.1093/bioinformatics/18.2.351">CrossRef
    39. Kreft J-U: g class="a-plus-plus">Biofilms promote altruism.g> / Microbiology 2004, g class="a-plus-plus">150:g>2751鈥?760. g/10.1099/mic.0.26829-0">CrossRef
    40. Pfeiffer T, Schuster S, Bonhoeffer S: g class="a-plus-plus">Cooperation and competition in the evolution of ATP-producing pathways.g> / Science 2001,g class="a-plus-plus">292g>(5516)g class="a-plus-plus">:g>504鈥?07. g/10.1126/science.1058079">CrossRef
    41. Carlson R, Srienc F: g class="a-plus-plus">Fundamental Escherichia coli biochemical pathways for biomass and energy production: Creation of overall flux states.g> / Biotechnol Bioeng 2004,g class="a-plus-plus">86g>(2)g class="a-plus-plus">:g>149鈥?62. g/10.1002/bit.20044">CrossRef
    42. Ragsdale SW: g class="a-plus-plus">Enzymology of the acetyl-coA pathway of COg> g class="a-plus-plus">2g> g class="a-plus-plus">fixation.g> / Crit Rev Biochem Mol Biol 1991, g class="a-plus-plus">26:g>261鈥?00. g/10.3109/10409239109114070">CrossRef
    43. Jeong H, Tombor B, Albert R, Oltvai ZN, Barabasi A-L: g class="a-plus-plus">The large-scale organization of metabolic networks.g> / Nature 2000,g class="a-plus-plus">407g>(6804)g class="a-plus-plus">:g>651鈥?54. g/10.1038/35036627">CrossRef
    44. Wagner A, Fell DA: g class="a-plus-plus">The small world inside large metabolic networks.g> / Proc R Soc Lond Ser B-Biol Sci 2001,g class="a-plus-plus">268g>(1478)g class="a-plus-plus">:g>1803鈥?810. g/10.1098/rspb.2001.1711">CrossRef
    45. Steuer R: g class="a-plus-plus">Computational approaches to the topology, stability and dynamics of metabolic networks.g> / Phytochemistry 2007,g class="a-plus-plus">68g>(16鈥?8)g class="a-plus-plus">:g>2139鈥?151. g/10.1016/j.phytochem.2007.04.041">CrossRef
    46. Gagneur J, Klamt S: g class="a-plus-plus">Computation of elementary modes: a unifying framework and the new binary approach.g> / BMC Bioinformatics 2004, g class="a-plus-plus">5:g>e175. g/10.1186/1471-2105-5-175">CrossRef
    47. Stelling J, Klamt S, Bettenbrock K, Schuster S, Gilles ED: g class="a-plus-plus">Metabolic network structure determines key aspects of functionality and regulation.g> / Nature 2002,g class="a-plus-plus">420g>(6912)g class="a-plus-plus">:g>190鈥?93. g/10.1038/nature01166">CrossRef
    48. Varma A, Palsson B脴: g class="a-plus-plus">Metabolic capabilities ofg> g class="a-plus-plus">Escherichia colig> g class="a-plus-plus">: II. Optimal growth patterns.g> / J Theor Biol 1993,g class="a-plus-plus">165g>(4)g class="a-plus-plus">:g>503鈥?22. g/10.1006/jtbi.1993.1203">CrossRef
    49. Edwards JS, Covert M, Palsson B: g class="a-plus-plus">Metabolic modelling of microbes: the flux-balance approach.g> / Environ Microbiol 2002,g class="a-plus-plus">4g>(3)g class="a-plus-plus">:g>133鈥?40. g/10.1046/j.1462-2920.2002.00282.x">CrossRef
    50. Edwards JS, Palsson B脴: g class="a-plus-plus">Theg> g class="a-plus-plus">Escherichia colig> g class="a-plus-plus">MG1655 in silico metabolic genotype: Its definition, characteristics, and capabilities.g> / Proc Natl Acad Sci USA 2000,g class="a-plus-plus">97g>(10)g class="a-plus-plus">:g>5528鈥?533. g/10.1073/pnas.97.10.5528">CrossRef
    51. Bell SL, Palsson B脴: g class="a-plus-plus">Phenotype phase plane analysis using interior point methods.g> / Comput Chem Eng 2005,g class="a-plus-plus">29g>(3)g class="a-plus-plus">:g>481鈥?86. g/10.1016/j.compchemeng.2004.08.019">CrossRef
    52. Schuetz R, Kuepfer L, Sauer U: g class="a-plus-plus">Systematic evaluation of objective functions for predicting intracellular fluxes ing> g class="a-plus-plus">Escherichia colig> g class="a-plus-plus">.g> / Mol Syst Biol 2007, g class="a-plus-plus">3:g>15. g/10.1038/msb4100162">CrossRef
    53. Schuster S, Pfeiffer T, Fell DA: g class="a-plus-plus">Is maximization of molar yield in metabolic networks favoured by evolution?g> / J Theor Biol 2008,g class="a-plus-plus">252g>(3)g class="a-plus-plus">:g>497鈥?04. g/10.1016/j.jtbi.2007.12.008">CrossRef
    54. Withgott J, Brennan SR: g class="a-plus-plus">Environment: The science behind the stories.g> / 2 Edition San Francisco: Pearson Benjamin Cummings 2007.
    55. Ward DM, Bateson MM, Ferris MJ, K眉hl M, Wieland A, Koeppel A, Cohan FM: g class="a-plus-plus">Cyanobacterial ecotypes in the microbial mat community of Mushroom Spring (Yellowstone National Park, Wyoming) as species-like units linking microbial community composition, structure and function.g> / Philos Trans R Soc Lond B Biol Sci 2006,g class="a-plus-plus">361g>(1475)g class="a-plus-plus">:g>1997鈥?008. g/10.1098/rstb.2006.1919">CrossRef
    56. Dykhuizen D, Hartl DL: g class="a-plus-plus">Selective Neutrality of 6pgd Allozymes ing> g class="a-plus-plus">Escherichia colig> g class="a-plus-plus">and the Effects of Genetic Background.g> / Genetics 1980,g class="a-plus-plus">96g>(4)g class="a-plus-plus">:g>801鈥?17.
    57. Ludwig M, Schulz-Friedrich R, Appel J: g class="a-plus-plus">Occurrence of hydrogenases in cyanobacteria and anoxygenic photosynthetic bacteria: Implications for the phylogenetic origin of cyanobacterial and algal hydrogenases.g> / J Mol Evol 2006,g class="a-plus-plus">63g>(6)g class="a-plus-plus">:g>758鈥?68. g/10.1007/s00239-006-0001-6">CrossRef
    58. Bhaya D, Grossman AR, Steunou AS, Khuri N, Cohan FM, Hamamura N, Melendrez MC, Bateson MM, Ward DM, Heidelberg JF: g class="a-plus-plus">Population level functional diversity in a microbial community revealed by comparative genomic and metagenomic analyses.g> / ISME J 2007,g class="a-plus-plus">1g>(8)g class="a-plus-plus">:g>703鈥?13. g/10.1038/ismej.2007.46">CrossRef
    59. Klatt CG, Bryant DA, Ward DM: g class="a-plus-plus">Comparative genomics provides evidence for the 3-hydroxypropionate autotrophic pathway in filamentous anoxygenic phototrophic bacteria and in hot spring microbial mats.g> / Environ Microbiol 2007,g class="a-plus-plus">9g>(8)g class="a-plus-plus">:g>2067鈥?078. g/10.1111/j.1462-2920.2007.01323.x">CrossRef
    60. Barton L, Hamilton WA: g class="a-plus-plus">Sulphate-reducing bacteria: Environmental and engineered systems.g> Cambridge; New York: Cambridge University Press 2007. g/10.1017/CBO9780511541490">CrossRef
    61. Henry EA, Devereux R, Maki JS, Gilmour CC, Woese CR, Mandelco L, Schauder R, Remsen CC, Mitchell R: g class="a-plus-plus">Characterization of a new thermophilic sulfate-reducing bacterium Thermodesulfovibrio yellowstonii, gen. nov. and sp. nov.: Its phylogenetic relationship to Thermodesulfobacterium commune and their origins deep within the bacterial domain.g> / Arch Microbiol 1994,g class="a-plus-plus">161g>(1)g class="a-plus-plus">:g>62鈥?9. g/10.1007/BF00248894">CrossRef
    62. Liolios K, Tavernarakis N, Hugenholtz P, Kyrpides NC: g class="a-plus-plus">The Genomes On Line Database (GOLD) v.2: a monitor of genome projects worldwide.g> / Nucleic Acids Res 2006, g class="a-plus-plus">34:g>D332-D334. g/10.1093/nar/gkj145">CrossRef
    63. White D: g class="a-plus-plus">The physiology and biochemistry of prokaryotes.g> / 3 Edition New York: Oxford University Press 2007.
    64. Green ML, Karp PD: g class="a-plus-plus">Using genome-context data to identify specific types of functional associations in pathway/genome databases.g> / Bioinformatics 2007,g class="a-plus-plus">23g>(13)g class="a-plus-plus">:g>I205-I211. g/10.1093/bioinformatics/btm213">CrossRef
    65. Revsbech NP, Ward DM: g class="a-plus-plus">Microelectrode studies of interstitial water chemistry and photosynthetic activity in a hot spring microbial mat.g> / Appl Environ Microbiol 1984,g class="a-plus-plus">48g>(2)g class="a-plus-plus">:g>270鈥?75.
    66. Klamt S, Saez-Rodriguez J, Gilles ED: g class="a-plus-plus">Structural and functional analysis of cellular networks with CellNetAnalyzer.g> / BMC Systems Biology 2007, g class="a-plus-plus">1:g>e2. g/10.1186/1752-0509-1-2">CrossRef
    67. Klamt S, Gagneur J, von Kamp A: g class="a-plus-plus">Algorithmic approaches for computing elementary modes in large biochemical reaction networks.g> / Syst Biol (Stevenage) 2005,g class="a-plus-plus">152g>(4)g class="a-plus-plus">:g>249鈥?55.
  • 作者单位:Reed Taffs (1) (2)
    John E Aston (1) (2)
    Kristen Brileya (1) (2)
    Zackary Jay (1)
    Christian G Klatt (1)
    Shawn McGlynn (1)
    Natasha Mallette (1) (2)
    Scott Montross (1)
    Robin Gerlach (1) (2)
    William P Inskeep (1)
    David M Ward (1)
    Ross P Carlson (1) (2)

    1. Thermal Biology Institute, Montana State University, Bozeman, MT, 59717, USA
    2. Center for Biofilm Engineering, Montana State University, Bozeman, MT, 59717, USA
文摘
Background Three methods were developed for the application of stoichiometry-based network analysis approaches including elementary mode analysis to the study of mass and energy flows in microbial communities. Each has distinct advantages and disadvantages suitable for analyzing systems with different degrees of complexity and a priori knowledge. These approaches were tested and compared using data from the thermophilic, phototrophic mat communities from Octopus and Mushroom Springs in Yellowstone National Park (USA). The models were based on three distinct microbial guilds: oxygenic phototrophs, filamentous anoxygenic phototrophs, and sulfate-reducing bacteria. Two phases, day and night, were modeled to account for differences in the sources of mass and energy and the routes available for their exchange. Results The in silico models were used to explore fundamental questions in ecology including the prediction of and explanation for measured relative abundances of primary producers in the mat, theoretical tradeoffs between overall productivity and the generation of toxic by-products, and the relative robustness of various guild interactions. Conclusion The three modeling approaches represent a flexible toolbox for creating cellular metabolic networks to study microbial communities on scales ranging from cells to ecosystems. A comparison of the three methods highlights considerations for selecting the one most appropriate for a given microbial system. For instance, communities represented only by metagenomic data can be modeled using the pooled method which analyzes a community's total metabolic potential without attempting to partition enzymes to different organisms. Systems with extensive a priori information on microbial guilds can be represented using the compartmentalized technique, employing distinct control volumes to separate guild-appropriate enzymes and metabolites. If the complexity of a compartmentalized network creates an unacceptable computational burden, the nested analysis approach permits greater scalability at the cost of more user intervention through multiple rounds of pathway analysis.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700