LandscapeDNDC: a process model for simulation of biosphere–atmosphere–hydrosphere exchange processes at site and regional scale
详细信息    查看全文
  • 作者:Edwin Haas (1)
    Steffen Klatt (1)
    Alexander Fr?hlich (1)
    Philipp Kraft (2)
    Christian Werner (3)
    Ralf Kiese (1)
    Rüdiger Grote (1)
    Lutz Breuer (2)
    Klaus Butterbach-Bahl (1)
  • 关键词:Regionalization ; Greenhouse gas emissions ; Inventory ; DNDC ; LandscapeDNDC ; Model coupling
  • 刊名:Landscape Ecology
  • 出版年:2013
  • 出版时间:April 2013
  • 年:2013
  • 卷:28
  • 期:4
  • 页码:615-636
  • 全文大小:2489KB
  • 参考文献:1. Aber JD, Federer CA (1992) A generalized, lumped-parameter model of photosynthesis, evapotranspiration and net primary production in temperate and boreal forest ecosystems. Oecologia 92:463-74. doi:10.1007/BF00317837 g/10.1007/BF00317837">CrossRef
    2. Beheydt D, Boeckx P, Sleutel S, Li C, Van Cleemput O (2007) Validation of DNDC for 22 long-term N2O field emission measurements. Atmos Environ 41:6196-211. doi:10.1016/j.atmosenv.2007.04.003
    3. Blagodatsky SA, Grote R, Kiese R, Werner C, Butterbach-Bahl K (2011) Modelling of microbial carbon and nitrogen turnover in soil with special emphasis on N-trace gases emission. Plant Soil 346:297-30. doi:10.1007/s11104-011-0821-z
    4. Bondeau A, Smith PC, Zaehle S, Schaphoff S, Lucht W, Cramer W, Gerten D, Lotze-Campen H, Mueller C, Reichstein M, Smith B (2007) Modelling the role of agriculture for the 20th century global terrestrial carbon balance. Global Change Biol 13:679-06. doi:10.1111/j.1365-2486.2006.01305.x
    5. Boyer EW, Alexander RB, Parton WJ, Li C, Butterbach-Bahl K, Donner SD, Skaggs RW, Del Grosso SJ (2006) Modeling denitrification in terrestrial and aquatic ecosystems at regional scales. Ecol Appl 16:2123-142. doi:10.1890/1051-0761(2006)016[2123:MDITAA]2.0.CO;2
    6. Butterbach-Bahl K, Dannenmann M (2011) Denitrification and associated soil N2O emissions due to agricultural activities in a changing climate. Curr Opin Environ Sustain 3:389-95. doi:10.1016/j.cosust.2011.08.004
    7. Butterbach-Bahl K, Kesik M, Miehle P, Papen H, Li C (2004a) Quantifying the regional source strength of N-trace gases across agricultural and forest ecosystems with process based models. Plant Soil 260:311-29. doi:10.1023/B:PLSO.0000030186.81212.fb
    8. Butterbach-Bahl K, Kock M, Willibald G, Hewett B, Buhagia S, Papen H, Kiese R (2004b) Temporal variations of fluxes of NO, NO2, N2O, CO2, and CH4 in a tropical rain forest ecosystem. Glob Biogeochem Cycles 18:GB3012. doi:10.1029/2004GB002243
    9. Butterbach-Bahl K, Kahl M, Mykhayliv L, Werner C, Kiese R, Li C (2009) A European-wide inventory of soil NO emissions using the biogeochemical models DNDC/Forest-DNDC. Atmos Environ 43:1392-402. doi:10.1016/j.atmosenv.2008.02.008
    10. Chatskikh D, Olesen JE, Berntsen J, Regina K, Yamulki S (2005) Simulation of effects of soils, climate and management on N2O emission from grasslands. Biogeochemistry 76:395-19. doi:10.1007/s10533-005-6996-8
    11. Chirinda N, Kracher D, L?gdsmand M, Porter JR, Olesen JE, Petersen BM, Doltra J, Kiese R, Butterbach-Bahl K (2011) Simulating soil N2O emissions and heterotrophic CO2 respiration in arable systems using FASSET and MoBiLE-DNDC. Plant Soil 343:251-60. doi:10.1007/s11104-010-0596-7
    12. Cicerone RJ, Shetter JD (1981) Sources of atmospheric methane: measurements in rice paddies and a discussion. J Geophys Res 86:7203-209. doi:10.1029/JC086iC08p07203 g/10.1029/JC086iC08p07203">CrossRef
    13. Conant RT (2011) Sequestration through forestry and agriculture. Wires Clim Chang 2:238-54. doi:10.1002/wcc.101 g/10.1002/wcc.101">CrossRef
    14. Cui J, Li C, Sun G, Trettin C (2005) Linkage of MIKE SHE to wetland-DNDC for carbon budgeting and anaerobic biogeochemistry simulation. Biogeochemistry 72:147-67. doi:10.1007/s10533-004-0367-8 g/10.1007/s10533-004-0367-8">CrossRef
    15. D?mmgen U (2007) Calculations of Emissions from German Agriculture—National Emission Inventory Report (NIR) 2007 for 2005, FAL Agricultural Research. Landbauforschung V?lkenrode, Institut für Agrarrelevante Klimaforschung Johann Heinrich von Thünen Institut (vTI) Bundesforschungsinstitut für L?ndliche R?ume, Wald und Fischerei
    16. D?mmgen U, Grünhage L (2002) Trace gas emissions from German agriculture as obtained from the application of simpler or default methodologies. Environ Pollut 117:23-4 g/10.1016/S0269-7491(01)00162-2">CrossRef
    17. de Noblet-Ducoudre N, Gervois S, Ciais P, Viovy N, Brisson N, Seguin B, Perrier A (2004) Coupling the soil-vegetation-atmosphere-transfer scheme ORCHIDEE to the agronomy model STICS to study the influence of croplands on the European carbon and water budgets. Agronomie 24:397-07
    18. Del Grosso SJ, Mosier AR, Parton WJ, Ojima DS (2005a) DAYCENT model analysis of past and contemporary soil N2O and net greenhouse gas flux for major crops in the USA. Soil Till Res 83:9-4. doi:10.1016/j.still.2005.02.007 g/10.1016/j.still.2005.02.007">CrossRef
    19. Del Grosso SJ, Parton WJ, Mosier AR, Holland EA, Pendall E, Schimel DS, Ojima DS (2005b) Modeling soil CO2 emissions from ecosystems. Biogeochemistry 73:71-1. doi:10.1007/s10533-004-0898-z
    20. Del Grosso SJ, Ogle SM, Parton WJ, Breidt FJ (2010) Estimating uncertainty in N2O emissions from US cropland soils. Glob Biogeochem Cycles 24:GB1009. doi:10.1029/2009GB003544
    21. Firestone M, Davidson E (1989) Microbial basis of NO and N2O production and consumption. In: Andreae MO, Schimel DS (eds) Dahlem workshop on exchange of trace Gases between terrestrial ecosystems and the atmosphere. Dahlem Koferenzen, Berlin
    22. Fouilloux A, Piacentini A (1999) The PALM project: MPMD paradigm for an oceanic data assimilation software. Lect Notes Comput Sci. 1685:1423-430
    23. Friend A, Schugart H, Running SW (1993) A physiology-based gap model of forest dynamics. Ecology 74:792-97 g/10.2307/1940806">CrossRef
    24. Gabrielle B, Laville P, Henault C, Nicoullaud B, Germon JC (2006) Simulation of nitrous oxide emissions from wheat-cropped soils using CERES. Nutr Cycl Agroecosys 74:133-46. doi:10.1007/s10705-005-5771-5
    25. Gervois S, Ciais P, de Noblet-Ducoudre N, Brisson N, Vuichard N, Viovy N (2008) Carbon and water balance of European croplands throughout the 20th century. Glob Biogeochem Cycles 22. doi:10.1029/2007GB003018
    26. Grant RF, Pattey E (2003) Modelling variability in N2O emissions from fertilized agricultural fields. Soil Biol Biochem 35:225-43. doi:10.1016/S0038-0717(02)00256-0 g/10.1016/S0038-0717(02)00256-0">CrossRef
    27. Grant RF, Nyborg M, Laidlaw JW (1993) Evolution of nitrous oxide from soil. Soil Sci 156:259-65. doi:10.1097/00010694-199310000-00006
    28. Grote R (2007) Sensitivity of volatile monoterpene emission to changes in canopy structure: a model-based exercise with a process-based emission model. New Phytol 173:550-61. doi:10.1111/j.1469-8137.2006.01946.x g/10.1111/j.1469-8137.2006.01946.x">CrossRef
    29. Grote R, Kiese R, Grünwald T, Ourcival JM, Granier A (2011) Modelling forest carbon balances considering tree mortality and removal. Agric For Meteorol 151:179-90. doi:10.1016/j.agrformet.2010.10.002
    30. Grote R, Lehmann E, Brümmer C, Brüggemann N, Szarzynski J, Kunstmann H (2009) Modelling and observation of biosphere–atmosphere interactions in natural savannah in Burkina Faso, West Africa. Phys Chem Earth. doi:10.1016/j.pce.2008.05.003
    31. Holst J, Grote R, Offermann C, Ferrio JP, Gessler A, Mayer H, Rennenberg H (2010) Water fluxes within beech stands in complex terrain. Int J Biometeorol 54:23-6. doi:10.1007/s00484-009-0248-x
    32. Houghton RA, Hackler J (1999) Emissions of carbon from forestry and land-use change in tropical Asia. Glob Chang Biol 5:481-92 g/10.1046/j.1365-2486.1999.00244.x">CrossRef
    33. IPCC (2006) 2006 IPCC guidelines for national greenhouse gas inventories volume 4 agriculture, Forestry and other land use. Institute for Glob Environmental Strategies (IGES), on behalf of the IPCC, Japan
    34. IPCC (2007) Climate change 2007: the physical science basis—contribution of working group i to the fourth assessment report of the intergovernmental panel on climate change, p 996
    35. IPCC (2000) IPCC special report: land use, land-use change, and forestry. Cambridge University Press, Cambridge
    36. Kaharabata SK (2003) Comparing measured and Expert-N predicted N2O emissions from conventional till and no till corn treatments. Nutr Cycl Agroecosys 66:107-18. doi:10.1023/A:1023978830307 g/10.1023/A:1023978830307">CrossRef
    37. Kemanian AR, Julich S, Manoranjan VS, Arnold JR (2011) Integrating soil carbon cycling with that of nitrogen and phosphorus in the watershed model SWAT: theory and model testing. Ecol Model 222:1913-921. doi:10.1016/j.ecolmodel.2011.03.017 g/10.1016/j.ecolmodel.2011.03.017">CrossRef
    38. Kesik M, Ambus P, Baritz R, Brüggemann NB, Butterbach-Bahl K, Damm M, Duyzer J, Horvath L, Kiese R, Kitzler B, Leip A, Li C, Pihlatie M, Pilegaard K, Seufert G, Simpson D, Skiba U, Smiatek G, Vesala T, Zechmeister-Boltenstern S (2005) Inventories of N2O and NO emissions from European forest soils. Biogeosciences 2:353-75
    39. Kiese R, Heinzeller C, Werner C, Wochele S, Grote R, Butterbach-Bahl K (2011) Quantification of nitrate leaching from German forest ecosystems by use of a process oriented biogeochemical model. Environ Pollut 159:3204-214. doi:10.1016/j.envpol.2011.05.004
    40. Klier C, Gayler S, Haberbosch C, Ruser R, Stenger R, Flessa H, Priesack E (2011) Modeling nitrous oxide emissions from potato-cropped soil. Vadose Zone J 10:184. doi:10.2136/vzj2009.0194
    41. Koomen E, Stillwell J, Bakema A, Scholten HJ (2008) Modelling land-use change, progress and applications. Springer, Dordrecht
    42. Kraft P, Vaché KB, Frede H-G, Breuer L (2011) CMF: a hydrological programming language extension for integrated catchment models. Environ Modell Softw 26:828-30. doi:10.1016/j.envsoft.2010.12.009 g/10.1016/j.envsoft.2010.12.009">CrossRef
    43. Lehuger S, Gabrielle B, van Oijen M, Makowski D, Germon JC, Morvan T, Henault C (2009) Bayesian calibration of the nitrous oxide emission module of an agro-ecosystem model. Agr Ecosyst Environ 133:208-22. doi:10.1016/j.agee.2009.04.022
    44. Li C (2000) Modeling trace gas emissions from agricultural ecosystems. Nutr Cycl Agroecosys 58:259-76. doi:10.1023/A:1009859006242 g/10.1023/A:1009859006242">CrossRef
    45. Li C, Aber J, Stange F, Butterbach-Bahl K, Papen H (2000) A process-oriented model of N2O and NO emissions from forest soils: 1 model development. J Geophys Res-Atmos 105:4369-384
    46. Li C, Frolking S, Butterbach-Bahl K (2005) Carbon sequestration in arable soils is likely to increase nitrous oxide emissions, offsetting reductions in climate radiative forcing. Clim Chang 72:321-38. doi:10.1007/s10584-005-6791-5 g/10.1007/s10584-005-6791-5">CrossRef
    47. Li C, Frolking S, Frolking TA (1992) A model of nitrous-oxide evolution from soil driven by rainfall events. 1. Model structure and sensitivity. J Geophys Res 97:9759-776. doi:10.1029/92JD00509 g/10.1029/92JD00509">CrossRef
    48. Mander ü, Uuemaa E, Kull A, Kanal A, Maddison M, Soosaar K, Salm JO, Lesta M, Hansen R, Kuller R, Harding A, Augustin J (2010) Assessment of methane and nitrous oxide fluxes in rural landscapes. Landsc Urban Plan 98:172-81. doi:10.1016/j.landurbplan.2010.08.021
    49. Meinshausen M, Meinshausen N, Hare W, Raper SCB, Frieler K, Knutti R, Frame DJ, Allen MR (2009) Greenhouse-gas emission targets for limiting global warming to 2 degree C. Nature 458:1158-162. doi:10.1038/nature08017
    50. Miehle P, Grote R, Battaglia M, Felkema PM, Arndt SK (2010) Evaluation of a process-based ecosystem model for long-term biomass and stand development of / Eucalyptus globulus plantations. Eur J Forest Res 129:377-91. doi:10.1007/s10342-009-0343-x
    51. Norman J, Jansson P-E, Farahbakhshazad N, Butterbach-Bahl C, Li C, Klemedtsson L (2008) Simulation of NO and N2O emissions from a spruce forest during a freeze/thaw event using an N-flux submodel from the PnET-N-DNDC model integrated to CoupModel. Ecol Model 216:18-0. doi:10.1016/j.ecolmodel.2008.04.012
    52. Pohlert T, Huisman JA, Breuer L, Frede HG (2007) Integration of a detailed biogeochemical model into SWAT for improved nitrogen predictions—model development, sensitivity, and GLUE analysis. Ecol Model 203:215-28. doi:10.1016/j.ecolmodel.2006.11.019 g/10.1016/j.ecolmodel.2006.11.019">CrossRef
    53. Post J, Habeck A, Hattermann F, Krysanova V, Wechsung F, Suckow F (2007) Modelling water and nutrient dynamics in soil–crop systems. Springer, Müncheberg, 129-46. doi:10.1007/978-1-4020-4479-3_10
    54. Roering J, Almond P, Tonkin P, McKean J (2004) Constraining climatic controls on hillslope dynamics using a coupled model for the transport of soil and tracers: application to loess-mantled hillslopes, South Island, New Zealand. J Geophys Res. doi:10.1029/2003JF000034
    55. Rolland M, Gabrielle B, Laville P, Cellier P, Beekmann M, Gilliot J-M, Michelin J, Hadjar D, Curci G (2010) High-resolution inventory of NO emissions from agricultural soils over the Ile-de-France region. Environ Pollut 158:711-22. doi:10.1016/j.envpol.2009.10.017
    56. Schmitter P, Dercon G, Hilger T, Hertel M, Treffner J, Lam N, Duc Vien T, Cadisch G (2011) Linking spatio-temporal variation of crop response with sediment deposition along paddy rice terraces. Agr Ecosyst Environ 140:34-5. doi:10.1016/j.agee.2010.11.009
    57. Schulze ED, Ciais P, Luyssaert S, Schrumpf M, Janssens IA, Thiruchittampalam B, Theloke J, Saurat M, Bringezu S, Lelieveld J, Lohila A, Rebmann C, Jung M, Bastviken D, Abril G, Grassi G, Leip A, Freibauer A, Kutsch W, Don A, Nieschulze J, Boerner A, Gash JH, Dolman AJ (2010) The European carbon balance. Part 4: integration of carbon and other trace-gas fluxes. Glob Chang Biol 16:1451-469. doi:10.1111/j.1365-2486.2010.02215.x
    58. Skiba U, Drewer J, Tang YS, van Dijk N, Helfter C, Nemitz E, Famulari D, Cape JN, Jones SK, Twigg M, Pihlatie M, Vesala T, Larsen KS, Carter MS, Ambus P, Ibrom A, Beier C, Hensen A, Frumau A, Erisman JW, Brüggemann N, Gasche R, Butterbach-Bahl K, Neftel A, Spirig C, Horvath L, Freibauer A, Cellier P, Laville P, Loubet B, Magliulo E, Bertolini T, Seufert G, Andersson M, Manca G, Laurila T, Aurela M, Lohila A, Zechmeister-Boltenstern S, Kitzler B, Schaufler G, Siemens J, Kindler R, Flechard C, Sutton MA (2009) Biosphere-atmosphere exchange of reactive nitrogen and greenhouse gases at the NitroEurope core flux measurement sites: measurement strategy and first data sets. Agr Ecosyst Environ 133:139-49
    59. Smith J, Gottschalk P, Bellarby J, Chapman S, Lilly A, Towers W, Bell J, Coleman K, Nayak D, Richards M, Hillier J, Flynn H, Wattenbach M, Aitkenhead M, Yeluripati J, Farmer J, Milne R, Thomson A, Evans C, Whitmore A, Falloon P, Smith P (2010) Estimating changes in Scottish soil carbon stocks using ECOSSE. I. Model description and uncertainties. Clim Res 45:179-92. doi:10.3354/cr00899
    60. Smith P, Martino D, Cai Z, Gwary D, Janzen H, Kumar P, McCarl B, Ogle S, O'Mara F, Rice C, Scholes B, Sirotenko O, Howden M, McAllister T, Pan G, Romanenkov V, Schneider U, Towprayoon S, Wattenbach M, Smith J (2008) Greenhouse gas mitigation in agriculture. Philos Trans R Soc Lond B Biol Sci 363:789-13. doi:10.1098/rstb.2007.2184
    61. Stange F, Butterbach-Bahl K, Papen H, Zechmeister-Boltenstern S, Li C, Aber J (2000) A process-oriented model of N2O and NO emissions from forest soils 2. Sensitivity analysis and validation. J Geophys Res-Atmos 105:4385-398
    62. Sutton MA, Nemitz E, Erisman JW, Beier C, Butterbach-Bahl K, Cellier P, De Vries W, Cotrufo F, Skiba U, Di Marco C, Jones S, Laville P, Soussana J-F, Loubet B, Twigg M, Famulari D, Whitehead J, Gallagher MW, Neftel A, Flechard CR, Herrmann B, Calanca PL, Schjoerring JK, D?mmgen U, Horvath L, Tang YS, Emmett BA, Tietema A, Pe?uelas J, Kesik M, Brüggemann N, Pilegaard K, Vesala T, Campbell CL, Olesen JE, Dragosits U, Theobald MR, Levy P, Mobbs DC, Milne R, Viovy N, Vuichard N, Smith JU, Smith P, Bergamaschi P, Fowler D, Reis S (2007) Challenges in quantifying biosphere–atmosphere exchange of nitrogen species. Environ Pollut 150:125-39. doi:10.1016/j.envpol.2007.04.014
    63. Van den Hoof C, Hanert E, Vidale PL (2011) Simulating dynamic crop growth with an adapted land surface model—JULES-SUCROS: model development and validation. Agric For Meteorol 151:137-53. doi:10.1016/j.agrformet.2010.09.011 g/10.1016/j.agrformet.2010.09.011">CrossRef
    64. Wassmann R, Papen H, Rennenberg H (1993) Methane emission from rice paddies and possible mitigation strategies. Chemosphere 26:201-17. doi:10.1016/0045-6535(93)90422-2 g/10.1016/0045-6535(93)90422-2">CrossRef
    65. Werner C, Butterbach-Bahl K, Haas E, Hickler T, Kiese R (2007) A global inventory of N2O emissions from tropical rainforest soils using a detailed biogeochemical model. Glob Biogeochem Cycles 21. doi:10.1029/2006GB002909
    66. Wolf B, Chen W, Brüggemann N, Zheng X, Pumpanen J, Butterbach-Bahl K (2010) Applicability of the soil gradient method for estimating soil–atmosphere CO2, CH4, and N2O fluxes for steppe soils in Inner Mongolia. J Plant Nutr Soil Sci 174:359-72. doi:10.1002/jpln.201000150
    67. Zaehle S, Sitch S, Smith B, Hatterman F (2005) Effects of parameter uncertainties on the modeling of terrestrial biosphere dynamics. Glob Biogeochem Cycles 19. doi:10.1029/2004GB002395
  • 作者单位:Edwin Haas (1)
    Steffen Klatt (1)
    Alexander Fr?hlich (1)
    Philipp Kraft (2)
    Christian Werner (3)
    Ralf Kiese (1)
    Rüdiger Grote (1)
    Lutz Breuer (2)
    Klaus Butterbach-Bahl (1)

    1. Institute of Meteorology and Climate Research (IMK-IFU), Karlsruhe Institute of Technology, Kreuzeckbahnstr. 19, 82467, Garmisch-Partenkirchen, Germany
    2. Institute for Landscape Ecology and Resources Management (ILR), Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26, 35392, Giessen, Germany
    3. Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, 60325, Frankfurt, Germany
  • ISSN:1572-9761
文摘
We present a new model system, which facilitates scaling of ecosystem processes from the site to regional simulation domains. The new framework LandscapeDNDC—partly based on the biogeochemical site scale model DNDC—inherits a series of new features with regard to process descriptions, model structure and data I/O functionality. LandscapeDNDC incorporates different vegetation types and management systems for simulating carbon, nitrogen and water related biosphere–atmosphere–hydrosphere fluxes in forest, arable and grassland ecosystems and allows the dynamic simulation of land use changes. The modeling concept divides ecosystems into six substates (canopy air chemistry, microclimate, physiology, water cycle, vegetation structure, and soil biogeochemistry) and provides alternative modules dealing with these substates. The model can be applied on the site scale, as well as for three-dimensional regional simulations. For regional applications LandscapeDNDC integrates all grid cells synchronously forward in time. This allows easy coupling to other spatially distributed models (e.g. for hydrology or atmospheric chemistry) and efficient two-way exchange of states. This paper describes the fundamental design concept of the model and its object-oriented software implementation. Two example applications are presented. First, calculation of a nitrous oxide emission inventory from agricultural soils for the State of Saxaony (Germany), including data preprocessing of the regional model input data. The computational effort for the LandscapeDNDC preprocessing and simulation could be speed up by a factor of almost 100 compared to the approach using the original DNDC version 9.3. Calculated N2O emissions for Saxony with LandscapeDNDC (2693 t N2O–N/a) were compared with the original DNDC model (2725 t N2O–N/a), the IPCC Tier I methodology (1107 t N2O–N/a), and the German National Inventory Report (equal to IPCC Tier II, 2100 t N2O–N/a). The second example illustrates the capabilities of LandscapeDNDC for building a fully coupled three-dimensional model system on the landscape scale. Therefore we coupled the biogeochemical and plant growth calculations to a hydrological transport model and demonstrate the transport of nitrogen along a virtual hillslope and associated formation of indirect nitrous oxide emissions.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700