Facile synthesis and post-processing of eco-friendly, highly conductive copper zinc tin sulphide nanoparticles
详细信息    查看全文
  • 作者:Rameez Ahmad (1)
    Monica Distaso (1)
    Hamed Azimi (2)
    Christoph J. Brabec (2) (3)
    Wolfgang Peukert (1)
  • 关键词:Raman spectroscopy ; Defects ; By ; products ; Thermodynamic study ; Kesterite ; Stannite CZTS nanoparticles
  • 刊名:Journal of Nanoparticle Research
  • 出版年:2013
  • 出版时间:September 2013
  • 年:2013
  • 卷:15
  • 期:9
  • 全文大小:911KB
  • 参考文献:1. Allen J, Bard RP, Jordan J (1985) Standard potentials in aqueous solution. CRC Press, Boca Raton
    2. Cao M, Shen Y (2011) A mild solvothermal route to kesterite quaternary Cu2ZnSnS4 nanoparticles. J Cryst Growth 318(1):1117鈥?120. doi:10.1016/j.jcrysgro.2010.10.071 CrossRef
    3. Chen M, Feng Y-G, Wang X, Li T-C, Zhang J-Y, Qian D-J (2007) Silver nanoparticles capped by oleylamine: formation, growth, and self-organization. Langmuir 23(10):5296鈥?304. doi:10.1021/la700553d CrossRef
    4. Cheng A-J, Manno M, Khare A, Leighton C, Campbell SA, Aydil ES (2011) Imaging and phase identification of Cu2ZnSnS4 thin films using confocal Raman spectroscopy. J Vac Sci Technol A 29(5):051203 CrossRef
    5. Chesman ASR, van Embden J, Duffy NW, Webster NAS, Jasieniak JJ (2013) In situ formation of reactive sulfide precursors in the one-pot, multigram synthesis of Cu2ZnSnS4 nanocrystals. Cryst Growth Des 13(4):1712鈥?720. doi:10.1021/cg4000268 CrossRef
    6. Cotton FAW, Wilkinson G (1962) Advance inorganic chemistry, 1st edn. Interscience Publishers, New York
    7. Delbos S (2012) K毛sterite thin films for photovoltaics: a review. EPJ Photovolt 3:35004 CrossRef
    8. Distaso M, Segets D, Wernet R, Taylor RK, Peukert W (2012) Tuning the size and the optical properties of ZnO mesocrystals synthesized under solvothermal conditions. Nanoscale 4(3):864鈥?73 CrossRef
    9. Dumcenco D, Huang Y-S (2013) The vibrational properties study of kesterite Cu2ZnSnS4 single crystals by using polarization dependent Raman spectroscopy. Opt Mater 35(3):419鈥?25. doi:10.1016/j.optmat.2012.09.031 CrossRef
    10. Ennaoui A, Lux-Steiner M, Weber A, Abou-Ras D, K枚tschau I, Schock HW, Schurr R, H枚lzing A, Jost S, Hock R, Vo脽 T, Schulze J, Kirbs A (2009) Cu2ZnSnS4 thin film solar cells from electroplated precursors: novel low-cost perspective. Thin Solid Films 517(7):2511鈥?514. doi:10.1016/j.tsf.2008.11.061 CrossRef
    11. Fernandes PA, Salom茅 PMP, da Cunha AF (2011) Study of polycrystalline Cu2ZnSnS4 films by Raman scattering. J Alloy Compd 509(28):7600鈥?606. doi:10.1016/j.jallcom.2011.04.097 CrossRef
    12. Fontane X, Calvo-Barrio L, Izquierdo-Roca V, Saucedo E, Perez-Rodriguez A, Morante JR, Berg DM, Dale PJ, Siebentritt S (2011) In-depth resolved Raman scattering analysis for the identification of secondary phases: characterization of Cu2ZnSnS4 layers for solar cell applications. Appl Phys Lett 98(18):181903鈥?81905 CrossRef
    13. Gerischer H, Sorg N (1992) Chemical dissolution of zinc oxide crystals in aqueous electrolytes鈥攁n analysis of the kinetics. Electrochim Acta 37(5):827鈥?35. doi:10.1016/0013-4686(92)85035-j CrossRef
    14. Grossberg M, Krustok J, Raudoja J, Timmo K, Altosaar M, Raadik T (2011) Photoluminescence and Raman study of Cu2ZnSnS4 monograins for photovoltaic applications. Thin Solid Films 519(21):7403鈥?406. doi:10.1016/j.tsf.2010.12.099 CrossRef
    15. Grossberg M, Krustok J, Raudoja J, Raadik T (2012) The role of structural properties on deep defect states in Cu2ZnSnS4 studied by photoluminescence spectroscopy. Appl Phys Lett 101(10):102102鈥?02104 CrossRef
    16. Guo Q, Hillhouse HW, Agrawal R (2009) Synthesis of Cu2ZnSnS4 nanocrystal ink and its use for solar cells. J Am Chem Soc 131(33):11672鈥?1673. doi:10.1021/ja904981r CrossRef
    17. Habas SE, Platt HAS, van Hest MFAM, Ginley DS (2010) Low-cost inorganic solar cells: from ink to printed device. Chem Rev 110(11):6571鈥?594. doi:10.1021/cr100191d CrossRef
    18. Hahn RB, Sanders CH, Gutnikov G (1960) Separation of Mn and Zn from Co and Ni by fractional dissolution of their sulfides. J Chem Educ 37(8):412. doi:10.1021/ed037p412 CrossRef
    19. Hlaing Oo WM, Johnson JL, Bhatia A, Lund EA, Nowell MM, Scarpulla MA (2011) Grain size and texture of Cu2ZnSnS4 thin films synthesized by cosputtering binary sulfides and annealing: effects of processing conditions and sodium. J Electron Mater 40(11):2214鈥?221. doi:10.1007/s11664-011-1729-3 CrossRef
    20. Hsu NE, Hung WK, Chen YF (2004) Origin of defect emission identified by polarized luminescence from aligned ZnO nanorods. J Appl Phys 96(8):4671鈥?673 CrossRef
    21. Hsu W-C, Bob B, Yang W, Chung C-H, Yang Y (2012) Reaction pathways for the formation of Cu2ZnSn(Se, S)4 absorber materials from liquid-phase hydrazine-based precursor inks. Energy Environ Sci 5(9):8564鈥?571 CrossRef
    22. Jiang H, Dai P, Feng Z, Fan W, Zhan J (2012) Phase selective synthesis of metastable orthorhombic Cu2ZnSnS4. J Mater Chem 22(15):7502鈥?506 CrossRef
    23. Kameyama T, Osaki T, Okazaki K-I, Shibayama T, Kudo A, Kuwabata S, Torimoto T (2010) Preparation and photoelectrochemical properties of densely immobilized Cu2ZnSnS4 nanoparticle films. J Mater Chem 20(25):5319鈥?324 CrossRef
    24. Katsikini M, Papagelis K, Paloura EC, Ves S (2003) Raman study of Mg, Si, O, and N implanted GaN. J Appl Phys 94(7):4389鈥?394 CrossRef
    25. Khare A, Wills AW, Ammerman LM, Norris DJ, Aydil ES (2011) Size control and quantum confinement in Cu2ZnSnS4 nanocrystals. Chem Commun 47(42):11721鈥?1723 CrossRef
    26. Khare A, Himmetoglu B, Johnson M, Norris DJ, Cococcioni M, Aydil ES (2012) Calculation of the lattice dynamics and Raman spectra of copper zinc tin chalcogenides and comparison to experiments. J Appl Phys 111(8):083707鈥?83709 CrossRef
    27. Kosyak V, Karmarkar MA, Scarpulla MA (2012) Temperature dependent conductivity of polycrystalline Cu2ZnSnS4 thin films. Appl Phys Lett 100(26):263903 CrossRef
    28. Kravets V (2007) Photoluminescence and Raman spectra of SnO; nanostructures doped with Sm ions. Opt Spectrosc 103(5):766鈥?71. doi:10.1134/s0030400x07110148 CrossRef
    29. Kumar RS, Ryu BD, Chandramohan S, Seol JK, Lee S-K, Hong C-H (2012) Rapid synthesis of sphere-like Cu2ZnSnS4 microparticles by microwave irradiation. Mater Lett 86:174鈥?77. doi:10.1016/j.matlet.2012.07.059 CrossRef
    30. Liu Y, Dong Y, Wang G (2003) Far-infrared absorption spectra and properties of SnO2 nanorods. Appl Phys Lett 82(2):260鈥?62 CrossRef
    31. Liu Z, Reed D, Kwon G, Shamsuzzoha M, Nikles DE (2007) Pt3Sn nanoparticles with controlled size: high-temperature synthesis and room-temperature catalytic activation for electrochemical methanol oxidation. J Phys Chem C 111(38):14223鈥?4229. doi:10.1021/jp0739263 CrossRef
    32. Lu X, Zhuang Z, Peng Q, Li Y (2011) Wurtzite Cu2ZnSnS4 nanocrystals: a novel quaternary semiconductor. Chem Commun 47(11):3141鈥?143 CrossRef
    33. Maeda T, Nakamura S, Wada T (2011) First-principles calculations of vacancy formation in in-free photovoltaic semiconductor Cu2ZnSnSe4. Thin Solid Films 519(21):7513鈥?516. doi:10.1016/j.tsf.2011.01.094 CrossRef
    34. Mitzi DB, Gunawan O, Todorov TK, Wang K, Guha S (2011) The path towards a high-performance solution-processed kesterite solar cell. Sol Energy Mater Sol Cells 95(6):1421鈥?436. doi:10.1016/j.solmat.2010.11.028 CrossRef
    35. Ness JND, Van-Huong T, Weller H (2012) Sustainable synthesis of semiconductor nanoparticles in a continuous flow reactor. MRS Proc 1386:mrsf11-1386-d07-02. doi:10.1557/opl.2012.5
    36. Nicholls D (1975) Complexes and first-row transition elements. American Elsevier, New York
    37. Patel M, Mukhopadhyay I, Ray A (2012) Structural, optical and electrical properties of spray-deposited CZTS thin films under a non-equilibrium growth condition. J Phys D Appl Phys 45(44):445103 CrossRef
    38. Ramasamy K, Malik MA, O鈥橞rien P (2012) Routes to copper zinc tin sulfide Cu2ZnSnS4 a potential material for solar cells. Chem Commun 48(46):5703鈥?714 CrossRef
    39. Rath T, Haas W, Pein A, Saf R, Maier E, Kunert B, Hofer F, Resel R, Trimmel G (2012) Synthesis and characterization of copper zinc tin chalcogenide nanoparticles: influence of reactants on the chemical composition. Solar Energy Mater Solar Cells 101:87鈥?4. doi:10.1016/j.solmat.2012.02.025 CrossRef
    40. Regulacio MD, Ye C, Lim SH, Bosman M, Ye E, Chen S, Xu Q-H, Han M-Y (2012) Colloidal nanocrystals of wurtzite-type Cu2ZnSnS4: facile noninjection synthesis and formation mechanism. Chemistry 18(11):3127鈥?131. doi:10.1002/chem.201103635 CrossRef
    41. Riha SC, Parkinson BA, Prieto AL (2009) Solution-based synthesis and characterization of Cu2ZnSnS4 nanocrystals. J Am Chem Soc 131(34):12054鈥?2055. doi:10.1021/ja9044168 CrossRef
    42. Romero MJ, Du H, Teeter G, Yan Y, Al-Jassim MM (2011) Comparative study of the luminescence and intrinsic point defects in the kesterite Cu2ZnSnS4 and chalcopyrite Cu(In, Ga)Se2 thin films used in photovoltaic applications. Phys Rev B 84(16):165324 CrossRef
    43. Rooney PC, Daniels DD (1998) Oxygen solubility in various alkanolamine/water mixtures. Petrol Technol Q 3(1):97
    44. Salavati-Niasari M, Fereshteh Z, Davar F (2009) Synthesis of oleylamine capped copper nanocrystals via thermal reduction of a new precursor. Polyhedron 28(1):126鈥?30. doi:10.1016/j.poly.2008.09.027 CrossRef
    45. Sarswat PK, Free ML, Tiwari A (2011) Temperature-dependent study of the Raman A mode of Cu2ZnSnS4 thin films. Phys Status Solidif B 248(9):2170鈥?174. doi:10.1002/pssb.201046477
    46. Singh A, Geaney H, Laffir F, Ryan KM (2012) Colloidal synthesis of wurtzite Cu2ZnSnS4 nanorods and their perpendicular assembly. J Am Chem Soc 134(6):2910鈥?913. doi:10.1021/ja2112146 CrossRef
    47. Sottery TW (1985) Chemical principles, 6th edn (Masterton WL, Slowinski EJ, Stanitski CL). J Chem Educ 62(12):A325. doi:10.1021/ed062pA325 CrossRef
    48. Su Z, Yan C, Sun K, Han Z, Liu F, Liu J, Lai Y, Li J, Liu Y (2012a) Preparation of Cu2ZnSnS4 thin films by sulfurizing stacked precursor thin films via successive ionic layer adsorption and reaction method. Appl Surf Sci 258(19):7678鈥?682. doi:10.1016/j.apsusc.2012.04.120 CrossRef
    49. Su Z, Yan C, Tang D, Sun K, Han Z, Liu F, Lai Y, Li J, Liu Y (2012b) Fabrication of Cu2ZnSnS4 nanowires and nanotubes based on AAO templates. CrystEngComm 14(3):782鈥?85 CrossRef
    50. Tian Q, Xu X, Han L, Tang M, Zou R, Chen Z, Yu M, Yang J, Hu J (2012) Hydrophilic Cu2ZnSnS4 nanocrystals for printing flexible, low-cost and environmentally friendly solar cells. CrystEngComm 14(11):3847鈥?850 CrossRef
    51. Todorov TK, Reuter KB, Mitzi DB (2010) High-efficiency solar cell with earth-abundant liquid-processed absorber. Adv Mater 22(20):E156鈥揈159. doi:10.1002/adma.200904155 CrossRef
    52. Todorov TK, Tang J, Bag S, Gunawan O, Gokmen T, Zhu Y, Mitzi DB (2012) Beyond 11% efficiency: characteristics of state-of-the-art Cu2ZnSn(S, Se)4 solar cells. Adv Energy Mater 3(1):34鈥?8. doi:10.1002/aenm.201200348 CrossRef
    53. Walsh A, Chen S, Gong XG, Wei S-H (2011) Crystal structure and defect reactions in the kesterite solar cell absorber Cu2ZnSnS4 (CZTS): theoretical insights. AIP Conf Proc 1399(1):63鈥?4 CrossRef
    54. Wang H (2011) Progress in thin film solar cells based on Cu2ZnSnS4. Int J Photoenergy. doi:10.1155/2011/801292
    55. Wang C, Cheng C, Cao Y, Fang W, Zhao L, Xu X (2011) Synthesis of Cu2ZnSnS4 nanocrystallines by a hydrothermal route. Jpn J Appl Phys 50:065003 (Copyright (C) 2011 The Japan Society of Applied Physics) CrossRef
    56. Wei M, Du Q, Wang D, Liu W, Jiang G, Zhu C (2012) Synthesis of spindle-like kesterite Cu2ZnSnS4 nanoparticles using thiourea as sulfur source. Mater Lett 79:177鈥?79. doi:10.1016/j.matlet.2012.03.080 CrossRef
    57. Winterton J, Myers D, Lippmann J, Pisano A, Doyle F (2008) A novel continuous microfluidic reactor design for the controlled production of high-quality semiconductor nanocrystals. J Nanopart Res 10(6):893鈥?05. doi:10.1007/s11051-007-9345-0 CrossRef
    58. Woo K, Kim Y, Moon J (2012) A non-toxic, solution-processed, earth abundant absorbing layer for thin-film solar cells. Energy Environ Sci 5(1):5340鈥?345 CrossRef
    59. Xin X, He M, Han W, Jung J, Lin Z (2011) Low-cost copper zinc tin sulfide counter electrodes for high-efficiency dye-sensitized solar cells. Angew Chem Int Ed 50(49):11739鈥?1742. doi:10.1002/anie.201104786 CrossRef
    60. Xu CY, Zhang PX, Yan L (2001) Blue shift of Raman peak from coated TiO2 nanoparticles. J Raman Spectrosc 32(10):862鈥?65. doi:10.1002/jrs.773 CrossRef
    61. Xu Z, Shen C, Hou Y, Gao H, Sun S (2009) Oleylamine as both reducing agent and stabilizer in a facile synthesis of magnetite nanoparticles. Chem Mater 21(9):1778鈥?780. doi:10.1021/cm802978z CrossRef
    62. Xu J, Yang X, Yang Q-D, Wong T-L, Lee C-S (2012) Cu2ZnSnS4 hierarchical microspheres as an effective counter electrode material for quantum dot sensitized solar cells. J Phys Chem C 116(37):19718鈥?9723. doi:10.1021/jp306628m CrossRef
    63. Yang H, Jauregui LA, Zhang G, Chen YP, Wu Y (2012a) Nontoxic and abundant copper zinc tin sulfide nanocrystals for potential high-temperature thermoelectric energy harvesting. Nano Lett 12(2):540鈥?45. doi:10.1021/nl201718z CrossRef
    64. Yang X, Xu J, Xi L, Yao Y, Yang Q, Chung CY, Lee C-S (2012b) Microwave-assisted synthesis of Cu2ZnSnS4 nanocrystals as a novel anode material for lithium ion battery. J Nanopart Res 14(6):1鈥?. doi:10.1007/s11051-012-0931-4 CrossRef
    65. Zaberca O, Oftinger F, Chane-Ching JY, Datas L, Lafond A, Puech P, Balocchi A, Lagarde D, Marie X (2012) Surfactant-free CZTS nanoparticles as building blocks for low-cost solar cell absorbers. Nanotechnology 23(18):185402 CrossRef
    66. Zhang Y, Yoshihara YA (2012) Synthesis of Cu2ZnSn(S, Se)4 nanoparticles for application in low-cost solar cells. Appl Phys Express 5:012301 (Copyright (c) 2012 The Japan Society of Applied Physics) CrossRef
    67. Zhou W-H, Zhou Y-L, Feng J, Zhang J-W, Wu S-X, Guo X-C, Cao X (2012) Solvothermal synthesis of flower-like Cu2ZnSnS4 nanostructures and their application as anode materials for lithium-ion batteries. Chem Phys Lett 546:115鈥?19. doi:10.1016/j.cplett.2012.07.060 CrossRef
  • 作者单位:Rameez Ahmad (1)
    Monica Distaso (1)
    Hamed Azimi (2)
    Christoph J. Brabec (2) (3)
    Wolfgang Peukert (1)

    1. Institute of Particle Technology, Friedrich-Alexander-Universit盲t Erlangen-N眉rnberg (FAU), Cauerstrasse 4, 91058, Erlangen, Germany
    2. Institute of Materials for Electronics and Energy Technology (I-MEET), Friedrich-Alexander-Universit盲t Erlangen-N眉rnberg (FAU), Martensstrasse 7, 91058, Erlangen, Germany
    3. Bavarian Centre for Applied Energy Research (ZAE Bayern), Haberstr. 2a, 91058, Erlangen, Germany
文摘
Cu2ZnSnS4 (CZTS) nanoparticles have shown promising properties to be used as an energy harvesting material. They are usually synthesised under inert atmosphere or vacuum, whereas the subsequent step of film formation is carried out under an atmosphere of sulphur and/or Sn in order to avoid the decomposition of CZTS nanoparticles into binary and ternary species as well as the formation of the corresponding oxides. In the present paper we show that both the synthesis of CZTS nanoparticles and the film formation from the corresponding suspension can be considerably simplified. Namely, the synthesis can be carried out without controlling the atmosphere, whereas during the film annealing a nitrogen atmosphere is sufficient to avoid the depletion of the CZTS kesterite phase. Furthermore, an integrated approach including in-depth Raman analysis is developed in order to deal with the challenges associated with the characterization of CZTS nanoparticles in comparison to bulk systems. The formation of competitive compounds during the synthesis such as binary and ternary sulphides as well as metal oxides nanoparticles is discussed in detail. Finally, the as-produced films have ten times higher conductivity than the state of the art.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700