Using Tendon Inherent Electric Properties to Consistently Track Induced Mechanical Strain
详细信息    查看全文
  • 作者:Christopher R. West (1)
    Anton E. Bowden (1) abowden@byu.edu
  • 关键词:Collagen – ; Material properties – ; Electrical resistance – ; Streaming potentials – ; Piezoelectric – ; Strain tracking
  • 刊名:Annals of Biomedical Engineering
  • 出版年:2012
  • 出版时间:July 2012
  • 年:2012
  • 卷:40
  • 期:7
  • 页码:1568-1574
  • 全文大小:572.2 KB
  • 参考文献:1. Ahn, A. C., and A. J. Grodzinsky. Relevance of collagen piezoelectricity to “Wolff’s law”: a critical review. Med. Eng. Phys. 31:733–741, 2009.
    2. Anderson, J. C., and C. Eriksson. Electrical properties of wet collagen. Nature 218:166–168, 1968.
    3. Barlian, A. A., W. T. Park, J. R. Mallon, A. J. Rastegar, and B. L. Pruitt. Review: semiconductor piezoresistance for microsystems. Proc. IEEE. 97:513–552, 2009.
    4. Cerulli, G., D. L. Benoit, M. Lamontagne, A. Caraffa, and A. Liti. In vivo anterior cruciate ligament strain behaviour during a rapid deceleration movement: case report. Knee Surg. Sports Traumatol. Arthrosc. 11:307–311, 2003.
    5. Bergmann, J. H., and A. H. McGregor. Body-worn sensor design: what do patients and clinicians want? Ann. Biomed. Eng. 39:2299–2312, 2011.
    6. Cawley, P. W., and E. P. France. Biomechanics of the lateral ligaments of the ankle—an evaluation of the effects of axial load and single plane motions on ligament strain patterns. Foot Ankle. 12:92–99, 1991.
    7. Chen, C. T., R. P. McCabe, A. J. Grodzinsky, and R. Vanderby, Jr. Transient and cyclic responses of strain-generated potential in rabbit patellar tendon are frequency and ph dependent. J. Biomech. Eng. 122:465–470, 2000.
    8. Chen, L., Y. Wu, J. Yu, Z. Jiao, Y. Ao, C. Yu, J. Wang, and G. Cui. Effect of repeated freezing-thawing on the achilles tendon of rabbits. Knee Surg. Sports Traumatol. Arthrosc. 19:1028–1034, 2011.
    9. Defrate, L. E., A. van der Ven, P. J. Boyer, T. J. Gill, and G. Li. The measurement of the variation in the surface strains of Achilles tendon grafts using imaging techniques. J. Biomech. 39:399–405, 2006.
    10. Erickson, A. R., K. Yasuda, B. Beynnon, R. Johnson, and M. Pope. An in vitro dynamic evaluation of prophylactic knee braces during lateral impact loading. Am. J. Sport Med. 21:26–35, 1993.
    11. Fleming, B. C., and B. D. Beynnon. In vivo measurement of ligament/tendon strains and forces: a review. Ann. Biomed. Eng. 32:318–328, 2004.
    12. Fukada, E. On the piezoelectric effect of silk fibers. J. Phys. Soc. Jpn. 11:1301A, 1956.
    13. Fukada, E., H. Ueda, and R. Rinaldi. Piezoelectric and related properties of hydrated collagen. Biophys J. 16:911–918, 1976.
    14. Fukada, E., and I. Yasuda. On the piezoelectric effect of bone. J. Phys. Soc. Jpn. 12:1158–1162, 1957.
    15. Fukada, E., and I. Yasuda. Piezoelectric effects in collagen. Jpn. J. Appl. Phys. 3:117–121, 1964.
    16. Gruverman, A., B. J. Rodriguez, and S. Kalinin. Electromechanical behavior in biological systems at the nanoscale. In: Scanning Probe Microscopy: Electrical and Electromechanical Phenomena at the Nanoscale, edited by S. Kalinin, and A. Gruverman. New York: Springer, 2007, pp. 615–633.
    17. Hild, F., and S. Roux. Digital image correlation: from displacement measurement to identification of elastic properties—a review. Strain. 42:69–80, 2006.
    18. Hoffman, A. H., D. R. Robichaud, II, J. J. Duquette, and P. Grigg. Determining the effect of hydration upon the properties of ligaments using pseudo gaussian stress stimuli. J. Biomech. 38:1636–1642, 2005.
    19. Huang, C. Y., V. M. Wang, E. L. Flatow, and V. C. Mow. Temperature-dependent viscoelastic properties of the human supraspinatus tendon. J. Biomech. 42:546–549, 2009.
    20. Jung, H. J., G. Vangipuram, M. B. Fisher, G. Yang, S. Hsu, J. Bianchi, C. Ronholdt, and S. L. Woo. The effects of multiple freeze-thaw cycles on the biomechanical properties of the human bone-patellar tendon-bone allograft. J. Orthop. Res. 29:1193–1198, 2011.
    21. Lichtwark, G. A., and A. M. Wilson. In vivo mechanical properties of the human Achilles tendon during one-legged hopping. J. Exp. Biol. 208:4715–4725, 2005.
    22. McDonald, F., and W. J. Houston. An in vivo assessment of muscular activity and the importance of electrical phenomena in bone remodelling. J Anat. 172:165–175, 1990.
    23. Minary-Jolandan, M., and M. F. Yu. Nanoscale characterization of isolated individual type I collagen fibrils: polarization and piezoelectricity. Nanotechnology 20:085706, 2009.
    24. Netto, T. G., and R. L. Zimmerman. Effect of water on piezoelectricity in bone and collagen. Biophys J. 15:573–576, 1975.
    25. Ravary, B., P. Pourcelot, C. Bortolussi, S. Konieczka, and N. Crevier-Denoix. Strain and force transducers used in human and veterinary tendon and ligament biomechanical studies. Clin. Biomech. 19:433–447, 2004.
    26. Regling, G. Conception of a bioelectromagnetic signal system via the collagen fibril network; biochemical conclusions and underlying coherent mechanism. I. Solid state effects and hierarchical bioelectrical regulation. Electro Magnetobiol 19:149–161, 2000.
    27. Reilly, P., A. M. Bull, A. A. Amis, A. L. Wallace, and R. J. Emery. Arthroscopically insertable force probes in the rotator cuff in vivo. Arthroscopy. 19:E8, 2003.
    28. Smutz, W. P., M. Drexler, L. J. Berglund, E. Growney, and K. N. An. Accuracy of a video strain measurement system. J Biomech. 29:813–817, 1996.
    29. Telega, J. J., and R. Wojnar. Piezoelectric effects in biological tissues. J. Theor. Appl. Mech. 3:723–758, 2002.
  • 作者单位:1. BYU Applied Biomechanical Engineering Laboratory, Department of Mechanical Engineering, 435B CTB Brigham Young University, Provo, UT 84602, USA
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Biomedicine
    Biomedicine
    Biomedical Engineering
    Biophysics and Biomedical Physics
    Mechanics
    Biochemistry
  • 出版者:Springer Netherlands
  • ISSN:1573-9686
文摘
The present work explores the possibility that the inherent electrical properties of a tendon might allow it to act as its own strain gauge. Tendon has been shown to exhibit piezoelectric effects as well as streaming potentials when subjected to a mechanical stress. To assess the feasibility of using these properties to repeatably measure in situ strain, bovine Achilles tendon test specimens were connected in series with a control resistor in a direct current circuit. Longitudinal (along the collagen fiber direction) and transverse test specimens were subjected to sinusoidal tension while electrical resistance data for the specimens was collected. Change in resistance per unit strain and gauge factors (GFs) revealed a repeatable and significantly different correlation between resistance and strain for the longitudinal and transverse specimens (p < 0.001). Change in resistance per unit strain values for longitudinal and transverse specimens were 0.85 and 1.76 MΩ/ε, respectively while corresponding GFs were 0.52 and 0.74, respectively. Others have reported piezoelectric mechanisms and streaming potential mechanisms in hydrated collagen, however the present work is unique in presenting an accurate and repeatable model of anisotropic tendon behavior that could be used to develop an in situ strain sensor.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700