A rational model of function learning
详细信息    查看全文
  • 作者:Christopher G. Lucas ; Thomas L. Griffiths…
  • 关键词:Function learning ; Bayesian modeling
  • 刊名:Psychonomic Bulletin & Review
  • 出版年:2015
  • 出版时间:October 2015
  • 年:2015
  • 卷:22
  • 期:5
  • 页码:1193-1215
  • 全文大小:1,977 KB
  • 参考文献:Aldous, D. (1985). Exchangeability and related topics, In 脡cole d鈥櫭﹖茅 de probabilit茅s de Saint-Flour, XIII鈥?983. (pp. 1鈥?98). Berlin: Springer.CrossRef
    Anderson, J.R. (1990). The adaptive character of thought. NJ: Erlbaum Hillsdale.
    Anderson, J.R. (1991). The adaptive nature of human categorization. Psychological Review, 98(3), 409鈥?29.CrossRef
    Ashby, F.G., & Alfonso-Reese, L.A. (1995). Categorization as probability density estimation. Journal of Mathematical Psychology, 39, 216鈥?33.CrossRef
    Bernardo, J.M., & Smith, A.F.M. (1994). Bayesian theory. New York: Wiley.CrossRef
    Borji, A., & Itti, L. (2013). Bayesian optimization explains human active search. In Burges, C., Bottou, L., Welling, M., Ghahramani, Z., Weinberger, K. (Eds.), Advances in Neural Information Processing Systems 26. (pp. 55鈥?3): Curran Associates, Inc.
    Bott, L., & Heit, E. (2004). Nonmonotonic extrapolation in function learning. Journal of Experimental Psychology: Learning Memory, and Cognition, 30(1).
    Brehmer, B. (1971). Subjects鈥?ability to use functional rules. Psychonomic Science, 24, 259鈥?60.CrossRef
    Brehmer, B. (1974). Hypotheses about relations between scaled variables in the learning of probabilistic inference tasks. Organizational Behavior and Human Decision Processes, 11, 1鈥?27.CrossRef
    Brehmer, B. (1976). Subjects鈥?ability to find the parameters of functional rules in probabilistic inference tasks. Organizational Behavior and Human Performance, 17(2), 388鈥?97.CrossRef
    Brehmer, B., Alm, H., Warg, L. (1985). Learning and hypothesis testing in probabilistic inference tasks. Scandinavian Journal of Psychology, 26(1), 305鈥?13.CrossRef
    Busemeyer, J.R., Byun, E., DeLosh, E.L., McDaniel, M.A. (1997). Learning functional relations based on experience with input-output pairs by humans and artificial neural networks. In Lamberts, K., & Shanks, D. (Eds.), Concepts and Categories. (pp. 405鈥?37). Cambridge: MIT Press.
    Byun, E. (1995). Interaction between prior knowledge and type of nonlinear relationship on function learning. Purdue University: Unpublished doctoral dissertation.
    Carroll, J. (1963). Functional learning: The learning of continuous functional mappings relating stimulus and response continua. NJ: Educational Testing Service Princeton.
    Chater, N., & Vitanyi, P. (2003). Simplicity: a unifying principle in cognitive science. Trends in Cognitive Science, 7, 19鈥?2.CrossRef
    DeLosh, E.L., Busemeyer, J.R., McDaniel, M.A. (1997). Extrapolation: The sine qua non of abstraction in function learning. Journal of Experimental Psychology: Learning Memory, and Cognition, 23, 968鈥?86.
    Duvenaud, D., Lloyd, J.R., Grosse, R., Tenenbaum, J.B., Ghahramani, Z. (2013). Structure discovery in nonparametric regression through compositional kernel search. arXiv preprint. arXiv:1302.鈥?922 .
    Erickson, M., & Kruschke, J. (1998). Rules and exemplars in category learning. Journal of Experimental Psychology: General, 127(2), 107.CrossRef
    Gelman, A., Carlin, J., Stern, H., Rubin, D (2004). Bayesian data analysis. CRC Press.
    Gilks, W., Richardson, S., Spiegelhalter, D.J. (Eds.) (1996). Markov Chain Monte Carlo in Practice. UK: Chapman and Hall Suffolk.
    Griffiths, T.L., Lucas, C.G., Williams, J.J., Kalish, M.L. (2009). Modeling human function learning with Gaussian processes. Advances in Neural Information Processing Systems, 21.
    Griffiths, T.L., Vul, E., Sanborn, A. (2012). Bridging levels of analysis for probabilistic models of cognition. Current Directions in Psychological Science, 21(4), 263鈥?68.CrossRef
    Hemmer, P., Tauber, S., Steyvers, M. (2014). Moving beyond qualitative evaluations of Bayesian models of cognition. Psychonomic Bulletin & Review, 1鈥?5.
    Hensman, J., Fusi, N., Lawrence, N.D. (2013). arXiv:1309.鈥?835 .
    Jacobs, R., Jordan, M., Nowlan, S., Hinton, G. (1991). Adaptive mixtures of local experts. Neural Computation, 3(1), 79鈥?7.CrossRef
    Kalish, M.L. (2013). Learning and extrapolating a periodic function. Memory & Cognition, 41(6), 886鈥?96.CrossRef
    Kalish, M.L., Griffiths, T.L., Lewandowsky, S. (2007). Iterated learning intergenerational knowledge transmission reveals inductive biases Psychonomic Bulletin and Review.
    Kalish, M.L., Lewandowsky, S., Kruschke, J. (2004). Population of linear experts: Knowledge partitioning and function learning. Psychological Review, 111, 1072鈥?099.CrossRef PubMed
    Kirby, S. (2001). Spontaneous evolution of linguistic structure: An iterated learning model of the emergence of regularity and irregularity. IEEE Journal of Evolutionary Computation, 5, 102鈥?10.CrossRef
    Koh, K., & Meyer, D. (1991). Function learning: Induction of continuous stimulus-response relations. Journal of Experimental Psychology: Learning Memory, and Cognition, 17(5), 811鈥?36.
    Kwantes, P., & Neal, A. (2006). Why people underestimate y when extrapolating in linear functions. Journal of Experimental Psychology: Learning Memory, and Cognition, 32(5), 1019.
    Lewandowsky, S.L., Kalish, M.L., Ngang, S.K. (2002). Simplified learning in complex situations: Knowledge partitioning in human learning. Journal of Experimental Psychology: General, 131, 163鈥?93.CrossRef
    Lindsey, R.V., Mozer, M.C., Huggins, W.J., Pashler, H. (2013). Optimizing instructional policies. In Burges, C., Bottou, L., Welling, M., Ghahramani, Z., Weinberger, K. (Eds.), Advances in Neural Information Processing Systems 26. (pp. 2778鈥?786): Curran Associates, Inc.
    Little, D.R., & Shiffrin, R.M. (2009). Simplicity bias in the estimation of causal functions. In Proceedings of the Thirty-First Annual Conference of the Cognitive Science Society.
    Lucas, C.G., Sterling, D.J., Kemp, C. (2012). Superspace extrapolation reveals inductive biases in function learning, In: Miyake, N., Peebles, D., and Cooper, R. P., editors, Proceedings of the 34th Annual Conference of the Cognitive Science Society. Cognitive Science Society.
    MacKay, D. (1995). Probable networks and plausible predictions鈥攁 review of practical Bayesian methods for supervised neural networks. Network: Computation in Neural Systems, 6, 469鈥?05.CrossRef
    Marr, D., & Vision. W.H. (1982). San Francisco CA: Freeman.
    McDaniel, M., & Busemeyer, J. (2005). The conceptual basis of function learning and extrapolation: Comparison of rule-based and associative-based models. Psychonomic Bulletin & Review, 12(1), 24.CrossRef
    McDaniel, M., Dimperio, E., Griego, J., Busemeyer, J. (2009). Predicting transfer performance: A comparison of competing function learning models. Journal of Experimental Psychology: Learning Memory, and Cognition, 35(1), 173.
    Meeds, E., & Osindero, S. (2006). Advances in Neural Information Processing Systems 18. In Weiss, Y., Sch枚lkopf, B., Platt, J. (Eds.) (pp. 883鈥?90). Cambridge, MA: MIT Press.
    Minh, H., Niyogi, P., Yao, Y. (2006). Mercer?s theorem, feature maps, and smoothing Learning theory.
    Mitchell, T.M. (1997). Machine learning. New York: McGraw Hill.
    Navarro, D.J., Griffiths, T.L., Steyvers, M., Lee, M.D. (2006). Modeling individual differences using Dirichlet processes. Journal of Mathematical Psychology, 50, 101鈥?22.CrossRef
    Neal, R.M. (1994). Priors for infinite networks technical report, Technical Report CRG-TR-94-1 Department of Computer Science University of Toronto.
    Neal, R.M. (1998). Markov chain sampling methods for Dirichlet process mixture models Technical Report 9815. University of Toronto: Department of Statistics.
    Rasmussen, C.E., & Ghahramani, Z. (2002). Infinite mixtures of Gaussian process experts In: Dietterich, T., Becker, S., and Ghahramani, Z., editors, Advances in Neural Information Processing Systems 14, pages 881鈥?88. MIT Press.
    Rasmussen, C.E., & Williams, C.K.I. (2006). Gaussian processes for machine learning. MIT Press.
    Sanborn, A.N., Griffiths, T.L., Navarro, D.J. (2010). Rational approximations to rational models: alternative algorithms for category learning. Psychological Review, 117(4), 1144.CrossRef PubMed
    Shepard, R.N. (1987). Towards a universal law of generalization for psychological science. Science, 237, 1317鈥?323.CrossRef PubMed
    Speekenbrink, M., & Shanks, D.R. (2010). Learning in a changing environment. Journal of Experimental Psychology: General, 139(2), 266.CrossRef
    Tenenbaum, J.B., Griffiths, T.L., Kemp, C. (2006). Theory-based Bayesian models of inductive learning and reasoning. Trends in Cognitive Science, 10, 309鈥?18.CrossRef
    Williams, C.K.I. (1998). Prediction with Gaussian processes: From linear regression to linear prediction and beyond. In Jordan, M. I. (Ed.), Learning in Graphical Models. (pp. 599鈥?21). Cambridge MA.: MIT Press.CrossRef
    Wilson, A.G., & Adams, R.P. (2013). Gaussian process covariance kernels for pattern discovery and extrapolation arXiv preprint. arXiv:1302.鈥?245 .
  • 作者单位:Christopher G. Lucas (1)
    Thomas L. Griffiths (2)
    Joseph J. Williams (3)
    Michael L. Kalish (4)

    1. School of Informatics, University of Edinburgh, 10 Crichton St., Edinburgh, EH8 9AB, UK
    2. Department of Psychology, University of California, Berkeley, USA
    3. HarvardX, Harvard University, Cambridge, USA
    4. Department of Psychology, Syracuse University, Syracuse, USA
  • 刊物主题:Cognitive Psychology;
  • 出版者:Springer US
  • ISSN:1531-5320
文摘
Theories of how people learn relationships between continuous variables have tended to focus on two possibilities: one, that people are estimating explicit functions, or two that they are performing associative learning supported by similarity. We provide a rational analysis of function learning, drawing on work on regression in machine learning and statistics. Using the equivalence of Bayesian linear regression and Gaussian processes, which provide a probabilistic basis for similarity-based function learning, we show that learning explicit rules and using similarity can be seen as two views of one solution to this problem. We use this insight to define a rational model of human function learning that combines the strengths of both approaches and accounts for a wide variety of experimental results. Keywords Function learning Bayesian modeling

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700