Regulation of phenylalanine ammonia-lyase (PAL) gene family in wood forming tissue of Populus trichocarpa
详细信息    查看全文
  • 作者:Rui Shi (1)
    Christopher M. Shuford (1) (2)
    Jack P. Wang (1)
    Ying-Hsuan Sun (1) (3)
    Zhichang Yang (2)
    Hsi-Chuan Chen (1)
    Sermsawat Tunlaya-Anukit (1)
    Quanzi Li (1) (4)
    Jie Liu (1)
    David C. Muddiman (2)
    Ronald R. Sederoff (1)
    Vincent L. Chiang (1) (5)
  • 关键词:Phenylalanine ammonia ; lyase ; Populus trichocarpa ; Enzyme property ; Subcellular localization ; Protein/mRNA ratio ; Post ; transcriptional regulation ; PC ; IDMS ; Wood formation
  • 刊名:Planta
  • 出版年:2013
  • 出版时间:September 2013
  • 年:2013
  • 卷:238
  • 期:3
  • 页码:487-497
  • 全文大小:489KB
  • 参考文献:1. Achnine L, Blancaflor EB, Rasmussen S, Dixon RA (2004) Colocalization of l -phenylalanine ammonia-lyase and cinnamate 4-hydroxylase for metabolic channeling in phenylpropanoid biosynthesis. Plant Cell 16:3098-109 CrossRef
    2. Ahmed H (2005) Principles and reactions of protein extraction. CRC Press, Boca Raton
    3. Appert C, Logemann E, Hahlbrock K, Schmid J, Amrhein N (1994) Structural and catalytic properties of the four phenylalanine ammonia-lyase isoenzymes from parsley (Petroselinum crispum Nym.). Eur J Biochem 225:491-99 CrossRef
    4. Araujo PR, Yoon K, Ko D, Smith AD, Qiao M, Suresh U, Burns SC, Penalva LO (2012) Before It gets started: regulating translation at the 5′UTR. Comp Funct Genomics 2012:475731 CrossRef
    5. Bagal UR, Leebens-Mack JH, Lorenz WW, Dean JF (2012) The phenylalanine ammonia lyase (PAL) gene family shows a gymnosperm-specific lineage. BMC Genomics 13(Suppl 3):S1
    6. Bassard JE, Mutterer J, Duval F, Werck-Reichhart D (2012) A novel method for monitoring the localization of cytochromes P450 and other endoplasmic reticulum membrane associated proteins: a tool for investigating the formation of metabolons. FEBS J 279:1576-583 CrossRef
    7. Chen HC, Li Q, Shuford C, Liu J, Muddiman D, Sederoff R, Chiang VL (2011) Membrane protein complexes catalyze both 4- and 3-hydroxylation of cinnamic acid derivatives in monolignol biosynthesis. PNAS 108:21253-1258 CrossRef
    8. Chiang VL (2002) From rags to riches. Nat Biotechnol 20:557-58 CrossRef
    9. Cochrane FC, Davin LB, Lewis NG (2004) The Arabidopsis phenylalanine ammonia lyase gene family: kinetic characterization of the four PAL isoforms. Phytochemistry 65:1557-564 CrossRef
    10. Czichi U, Kindl H (1975) Formation of p-coumaric acid and o-coumaric acid from l -phenylalanine by microsomal membrane fractions from potato: evidence of membrane-bound enzyme complexes. Planta 125:115-25
    11. Gao L, Fang Z, Zhang K, Zhi D, Cui X (2011) Length bias correction for RNA-seq. data in gene set analyses. Bioinformatics 27:662-69 CrossRef
    12. Hrazdina G, Wagner G (1985) Metabolic pathways as enzyme complexes: evidence for the synthesis of phenylpropanoids and flavonoids on membrane-associated enzyme complexes. Arch Biochem Biophys 237:88-00 CrossRef
    13. Jorrin J, Dixon R (1990) Stress responses in alfalfa (Medicago sativa L.) II. Purification, characterization, and induction of phenylalanine ammonia-lyase Isoforms from elicitor-treated cell suspension cultures. Plant Physiol 92:447-55 CrossRef
    14. Kao YY, Harding SA, Tsai CJ (2002) Differential expression of two distinct phenylalanine ammonia-lyase genes in condensed tannin-accumulating and lignifying cells of quaking aspen. Plant Physiol 130:796-07 CrossRef
    15. Lepelley M, Mahesh V, McCarthy J, Rigoreau M, Crouzillat D, Chabrillange N, de Kochko A, Campa C (2012) Characterization, high-resolution mapping and differential expression of three homologous PAL genes in Coffea canephora Pierre (Rubiaceae). Planta 236:313-26 CrossRef
    16. Li Q, Lin Y, Sun YH, Song J, Chen H, Zhang X, Sederoff R, Chiang VL (2012) Splice variant of the SND1 transcription factor is a dominant negative of SND1 members and their regulation in Populus trichocarpa. PNAS 109:14699-4704 CrossRef
    17. Liang XW, Dron M, Cramer CL, Dixon RA, Lamb CJ (1989) Differential regulation of phenylalanine ammonia-lyase genes during plant development and by environmental cues. J Biol Chem 264:14486-4492
    18. Liu H, Sadygov RG, Yates JR 3rd (2004) A model for random sampling and estimation of relative protein abundance in shotgun proteomics. Anal Chem 76:4193-201 CrossRef
    19. Liu J, Shi R, Li Q, Sederoff R, Chiang VL (2012) A standard reaction condition and a single HPLC separation system are sufficient for estimation of monolignol biosynthetic pathway enzyme activities. Planta 236:879-85 CrossRef
    20. MacDonald MJ, D’Cunha GB (2007) A modern view of phenylalanine ammonia lyase. Biochem Cell Biol 85:273-82 CrossRef
    21. Maier T, Schmidt A, Güell M, Kühner S, Gavin AC, Aebersold R, Serrano L (2011) Quantification of mRNA and protein and integration with protein turnover in a bacterium. Mol Syst Biol 7:511 CrossRef
    22. Malys N, McCarthy JE (2011) Translation initiation: variations in the mechanism can be anticipated. Cell Mol Life Sci 68:991-003 CrossRef
    23. Mortazavi A, Williams BA, McCue K et al (2008) Mapping and quantifying mammalian transcriptomes by RNASeq. Nat Methods 5:621-28 CrossRef
    24. Mosley AL, Sardiu ME, Pattenden SG, Workman JL, Florens L, Washburn MP (2011) Highly reproducible label free quantitative proteomic analysis of RNA polymerase complexes. Mol Cell Proteomics 10: M110.000687. doi:10.1074/mcp.M110.000687
    25. Motameny S, Wolters S, Nurnberg R, Schumacher B (2010) Next generation sequencing of miRNAs—strategies, resources and methods. Genes 1:70-4 CrossRef
    26. Nie L, Wu G, Zhang W (2006) Correlation between mRNA and protein abundance in Desulfovibrio vulgaris: a multiple regression to identify of variations. Biochem Biophys Res Commun 339:603-10 CrossRef
    27. Olsen KM, Lea US, Slimestad R, Verheul M, Lillo C (2008) Differential expression of four Arabidopsis PAL genes; PAL1 and PAL2 have functional specialization in abiotic environmental-triggered flavonoid synthesis. J Plant Physiol 165:1491-499 CrossRef
    28. Pietarinen S, Willf?r S, Vikstr?m F, Holmbom B (2006) Aspen knots, a rich source of flavonoids. J Wood Chem Technol 26:245-58 CrossRef
    29. Rasmussen S, Dixon RA (1999) Transgene-mediated and elicitor-induced perturbation of metabolic channeling at the entry point into the phenylpropanoid pathway. Plant Cell 11:1537-551
    30. Reichert AI, He XZ, Dixon RA (2009) Phenylalanine ammonia-lyase (PAL) from tobacco (Nicotiana tabacum): characterization of the four tobacco PAL genes and active heterotetrameric enzymes. Biochem J 424:233-42 CrossRef
    31. Rohde A, Morreel K, Ralph J et al (2004) Molecular phenotyping of the pal1 and pal2 mutants of Arabidopsis thaliana reveals far-reaching consequences on phenylpropanoid, amino acid, and carbohydrate metabolism. Plant Cell 16:2749-771 CrossRef
    32. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New York
    33. Sato T, Takabe K, Fujita M (2004) Immunolocalization of phenylalanine ammonia-lyase and cinnamate-4-hydroxylase in differentiating xylem of poplar. C R Biol 327:827-36 CrossRef
    34. Scheer M, Grote A, Chang A, Schomburg I, Munaretto C, Rother M, S?hngen C, Stelzer M, Thiele J, Schomburg D (2011) BRENDA, the enzyme information system in 2011. Nucleic Acids Res 39:D670–D676 CrossRef
    35. Schwanh?usser B, Busse D, Li N, Dittmar G, Schuchhardt J, Wolf J, Chen W, Selbach M (2011) Global quantification of mammalian gene expression control. Nature 473:337-42 CrossRef
    36. Schwanh?usser B, Busse D, Li N, Dittmar G, Schuchhardt J, Wolf J, Chen W, Selbach M (2013) Corrigendum: global quantification of mammalian gene expression control. Nature 495:126-27 CrossRef
    37. Shi R, Sun YH, Li Q, Heber S, Sederoff R, Chiang VL (2010a) Towards a systems approach for lignin biosynthesis in Populus trichocarpa: transcript abundance and specificity of the monolignol biosynthetic genes. Plant Cell Physiol 51:144-63 CrossRef
    38. Shi R, Yang C, Lu S, Sederoff R, Chiang VL (2010b) Specific down-regulation of PAL genes by artificial microRNAs in?Populus trichocarpa. Planta 6:1281-288 CrossRef
    39. Shuford C, Li Q, Sun YH, Chen H, Wang J, Shi R, Sederoff R, Chiang V, Muddiman D (2012a) Comprehensive quantification of monolignol-pathway enzymes in populus trichocarpa by protein cleavage isotope dilution mass spectrometry. J Proteome Res 11:3390-404 CrossRef
    40. Shuford C, Sederoff R, Chiang V, Muddiman D (2012b) Peptide production and decay rates affect the quantitative accuracy of protein cleavage isotope dilution mass spectrometry (PC-IDMS). Mol Cell Proteomics 11:814-23 CrossRef
    41. Studer M, DeMartini J, Davis M, Sykes R, Davison B, Keller M, Tuskan G, Wyman C (2011) Lignin content in natural Populus variants affects sugar release. Proc Natl Acad Sci USA 108:6300-305 CrossRef
    42. Tian Q, Stepaniants SB, Mao M, Weng L, Feetham MC et al (2004) Integrated genomic and proteomic analyses of gene expression in mammalian cells. Mol Cell Proteomics 3:960-69 CrossRef
    43. Tuskan GA, Difazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, Putnam N, Ralph S, Rombauts S, Salamov A et al (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313:1596-604 CrossRef
    44. Vermerris W, Nicholson R (2006) Phenolic compound biochemistry. Springer, Berlin, pp 107-08
    45. Vogel C, Marcotte EM (2012) Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nat Rev Genet 13:227-32
    46. Vogt T (2010) Phenylpropanoid biosynthesis. Mol plant 3:2-0 CrossRef
    47. Wang J, Shuford C, Li Q, Song J, Lin Y, Sun Y, Chen H, Williams C, Muddiman D, Sederoff R, Chiang VL (2012) Functional rRedundancy of the tTwo 5-Hydroxylases in monolignol biosynthesis of populus trichocarpa: lC-MS/MS based protein quantification and metabolic flux analysis. Planta 236:795-08 CrossRef
    48. Zhang Y, Wen Z, Washburn MP, Florens L (2010) Refinements to label free proteome quantitation: how to deal with peptides shared by multiple proteins. Anal Chem 82:2272-281 CrossRef
  • 作者单位:Rui Shi (1)
    Christopher M. Shuford (1) (2)
    Jack P. Wang (1)
    Ying-Hsuan Sun (1) (3)
    Zhichang Yang (2)
    Hsi-Chuan Chen (1)
    Sermsawat Tunlaya-Anukit (1)
    Quanzi Li (1) (4)
    Jie Liu (1)
    David C. Muddiman (2)
    Ronald R. Sederoff (1)
    Vincent L. Chiang (1) (5)

    1. Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, 27695, USA
    2. W.M. Keck Fourier Transform Mass Spectrometry Laboratory, Department of Chemistry, North Carolina State University, Raleigh, NC, 27695, USA
    3. Department of Forestry, National Chung Hsing University, Taichung, 40227, Taiwan
    4. College of Forestry, Shandong Agricultural University, Taian, Shandong, 271018, China
    5. Department of Forest Biomaterials, North Carolina State University, Raleigh, NC, 27695, USA
文摘
Phenylalanine ammonia-lyase (PAL) catalyzes the initial step of phenylpropanoid biosynthesis in plants. Five PAL genes (PtrPAL1 to 5) have been identified in Populus trichocarpa. These genes are classified into two subgroups according to their transcript sequence similarity and tissue specificity. However, the regulation of these genes and their protein functions are not well understood. In this study, enzymatic properties of each PtrPALs were characterized based on their recombinant proteins expressed in E.coli. Subcellular localizations of each PtrPALs in stem wood forming tissue were investigated and individual PtrPAL protein abundances in cytosol and membrane protein fractions were measured using protein cleavage-isotope dilution mass spectrometry (PC-IDMS). Protein/mRNA ratios of PtrPALs were further verified using RNA-Seq and gel-enhanced liquid chromatography mass spectrometry (GeLC-MS). All PtrPALs have similar catalytic properties for the deamination of l-phenylalanine, their major substrate. All PtrPALs have similar subcellular locations in stem wood forming tissue, with major amount in the cytosol (93-6?%) and less in the membrane (4-?%). However, the protein/mRNA ratios of subgroup A (PtrPAL2, 4 and 5) are about five times that of subgroup B (PtrPAL1 and 3) in stem wood forming tissue, while all PtrPALs have similar transcript abundances. These results indicate a greater functional significance of subgroup A PtrPALs for stem wood formation, and highlight the role of gene post-transcriptional regulation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700