Application of layout optimization to the design of additively manufactured metallic components
详细信息    查看全文
文摘
Additive manufacturing (‘3D printing’) techniques provide engineers with unprecedented design freedoms, opening up the possibility for stronger and lighter component designs. In this paper ‘layout optimization’ is used to provide a reference volume and to identify potential design topologies for a given component, providing a useful alternative to continuum based topology optimization approaches (which normally require labour intensive post-processing in order to realise a practical component). Here simple rules are used to automatically transform a line structure layout into a 3D continuum. Two examples are considered: (i) a simple beam component subject to three-point bending; (ii) a more complex air-brake hinge component, designed for the Bloodhound supersonic car. These components were successfully additively manufactured using titanium Ti-6Al-4V, using the Electron Beam Melting (EBM) process. Also, to verify the efficacy of the process and the mechanical performance of the fabricated specimens, a total of 12 beam samples were load tested to failure, demonstrating that the target design load could successfully be met.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700