Expanding the roles of chromatin insulators in nuclear architecture, chromatin organization and genome function
详细信息    查看全文
  • 作者:Todd Schoborg (1) (2)
    Mariano Labrador (1)
  • 关键词:Chromatin insulators ; Insulator evolution ; Architectural proteins ; Genome organization ; Chromatin looping ; Gene transcription
  • 刊名:Cellular and Molecular Life Sciences (CMLS)
  • 出版年:2014
  • 出版时间:November 2014
  • 年:2014
  • 卷:71
  • 期:21
  • 页码:4089-4113
  • 全文大小:887 KB
  • 参考文献:1. Flemming W (1882) Zellsubstanz, Kern und Zelltheilung. F. C. W. Vogel, Leipzig
    2. Ammar R, Torti D, Tsui K, Gebbia M, Durbic T, Bader GD, Giaever G, Nislow C, Reinberg D (2012) Chromatin is an ancient innovation conserved between Archaea and Eukarya. eLife 1. doi:10.7554/eLife.00078
    3. Pereira SL, Grayling RA, Lurz R, Reeve JN (1997) Archaeal nucleosomes. Proc Natl Acad Sci 94(23):12633鈥?2637
    4. Pereira SL, Reeve JN (1998) Histones and nucleosomes in Archaea and Eukarya: a comparative analysis. Extremophiles 2(3):141鈥?48. doi:10.1007/s007920050053
    5. Le TBK, Imakaev MV, Mirny LA, Laub MT (2013) High-resolution mapping of the spatial organization of a bacterial chromosome. Science 342(6159):731鈥?34. doi:10.1126/science.1242059
    6. Thanbichler M, Wang SC, Shapiro L (2005) The bacterial nucleoid: a highly organized and dynamic structure. J Cell Biochem 96(3):506鈥?21. doi:10.1002/jcb.20519
    7. Wang W, Li G-W, Chen C, Xie XS, Zhuang X (2011) Chromosome organization by a nucleoid-associated protein in live bacteria. Science 333(6048):1445鈥?449. doi:10.1126/science.1204697
    8. MacAlpine DM, Almouzni G (2013) Chromatin and DNA replication. Cold Spring Harb Perspect Biol 5(8). doi:10.1101/cshperspect.a010207
    9. Meaburn KJ, Misteli T (2007) Cell biology: chromosome territories. Nature 445(7126):379鈥?81
    10. Smolle M, Venkatesh S (2014) Transcription through chromatin. In: Workman JL, Abmayr SM (eds) Fundamentals of chromatin. Springer, New York, pp 427鈥?89. doi:10.1007/978-1-4614-8624-4_11
    11. Soria G, Polo SE, Almouzni G (2012) Prime, repair, restore: the active role of chromatin in the DNA damage response. Mol Cell 46(6):722鈥?34
    12. Vagnarelli P (2012) Mitotic chromosome condensation in vertebrates. Exp Cell Res 318(12):1435鈥?441. doi:10.1016/j.yexcr.2012.03.017
    13. Bannister AJ, Kouzarides T (2011) Regulation of chromatin by histone modifications. Cell Res 21(3):381鈥?95
    14. Cavalli G, Misteli T (2013) Functional implications of genome topology. Nat Struct Mol Biol 20(3):290鈥?99
    15. Hnilicov谩 J, Stan臎k D (2011) Where splicing joins chromatin. Nucleus 2(3):182鈥?88
    16. Jiang C, Pugh BF (2009) Nucleosome positioning and gene regulation: advances through genomics. Nat Rev Genet 10(3):161鈥?72
    17. Marsman J, Horsfield JA (2012) Long distance relationships: enhancer鈥損romoter communication and dynamic gene transcription. Biochim Biophys Acta 1819(11鈥?2):1217鈥?227. doi:10.1016/j.bbagrm.2012.10.008
    18. Kellum R, Schedl P (1991) A position-effect assay for boundaries of higher order chromosomal domains. Cell 64(5):941鈥?50
    19. Udvardy A, Maine E, Schedl P (1985) The 87A7 chromomere: identification of novel chromatin structures flanking the heat shock locus that may define the boundaries of higher order domains. J Mol Biol 185(2):341鈥?58
    20. Wallace HA, Plata MP, Kang HJ, Ross M, Labrador M (2010) Chromatin insulators specifically associate with different levels of higher-order chromatin organization in / Drosophila. Chromosoma 119(2):177鈥?94. doi:10.1007/s00412-009-0246-0
    21. Zhao K, Hart CM, Laemmli UK (1995) Visualization of chromosomal domains with boundary element-associated factor BEAF-32. Cell 81(6):879鈥?89
    22. Blanton J, Gaszner M, Schedl P (2003) Protein:protein interactions and the pairing of boundary elements in vivo. Genes Dev 17(5):664鈥?75
    23. Bushey AM, Ramos E, Corces VG (2009) Three subclasses of a / Drosophila insulator show distinct and cell type-specific genomic distributions. Genes Dev 23(11):1338鈥?350. doi:10.1101/gad.1798209
    24. Hou C, Dale R, Dean A (2010) Cell type specificity of chromatin organization mediated by CTCF and cohesin. Proc Natl Acad Sci USA 107(8):3651鈥?656. doi:10.1073/pnas.0912087107
    25. Hou C, Li L, Qin ZS, Corces VG (2012) Gene density, transcription, and insulators contribute to the partition of the / Drosophila genome into physical domains. Mol Cell 48(3):471鈥?84
    26. Hou C, Zhao H, Tanimoto K, Dean A (2008) CTCF-dependent enhancer-blocking by alternative chromatin loop formation. Proc Natl Acad Sci USA 105(51):20398鈥?0403. doi:10.1073/pnas.0808506106
    27. Kurukuti S, Tiwari VK, Tavoosidana G, Pugacheva E, Murrell A, Zhao Z, Lobanenkov V, Reik W, Ohlsson R (2006) CTCF binding at the / H19 imprinting control region mediates maternally inherited higher-order chromatin conformation to restrict enhancer access to / Igf2. Proc Natl Acad Sci USA 103(28):10684鈥?0689
    28. N猫gre N, Brown CD, Shah PK, Kheradpour P, Morrison CA, Henikoff JG, Feng X, Ahmad K, Russell S, White RAH, Stein L, Henikoff S, Kellis M, White KP (2010) A comprehensive map of insulator elements for the / Drosophila genome. PLoS Genet 6(1):e1000814. doi:10.1371/journal.pgen.1000814
    29. Sexton T, Yaffe E, Kenigsberg E, Bantignies F, Leblanc B, Hoichman M, Parrinello H, Tanay A, Cavalli G (2012) Three-dimensional folding and functional organization principles of the / Drosophila genome. Cell 148(3):458鈥?72
    30. Schuettengruber B, Cavalli G (2013) Polycomb domain formation depends on short and long distance regulatory cues. PLoS One 8(2):e56531. doi:10.1371/journal.pone.0056531
    31. Schwartz YB, Linder-Basso D, Kharchenko PV, Tolstorukov MY, Kim M, Li HB, Gorchakov AA, Minoda A, Shanower G, Alekseyenko AA, Riddle NC, Jung YL, Gu T, Plachetka A, Elgin SC, Kuroda MI, Park PJ, Savitsky M, Karpen GH, Pirrotta V (2012) Nature and function of insulator protein binding sites in the / Drosophila genome. Genome Res 22(11):2188鈥?198
    32. Van Bortle K, Ramos E, Takenaka N, Yang J, Wahi JE, Corces VG (2012) / Drosophila CTCF tandemly aligns with other insulator proteins at the borders of H3K27me3 domains. Genome Res 22(11):2176鈥?187. doi:10.1101/gr.136788.111
    33. Sanyal A, Lajoie BR, Jain G, Dekker J (2012) The long-range interaction landscape of gene promoters. Nature 489(7414):109鈥?13
    34. Xu Z, Wei G, Chepelev I, Zhao K, Felsenfeld G (2011) Mapping of INS promoter interactions reveals its role in long-range regulation of SYT8 transcription. Nat Struct Mol Biol 18(3):372鈥?78
    35. Eldholm V, Haugen A, Zienolddiny S (2014) CTCF mediates the TERT enhancer鈥損romoter interactions in lung cancer cells: identification of a novel enhancer region involved in the regulation of TERT gene. Int J Cancer 134(10):2305鈥?313. doi:10.1002/ijc.28570
    36. Erokhin M, Davydova A, Kyrchanova O, Parshikov A, Georgiev P, Chetverina D (2011) Insulators form gene loops by interacting with promoters in / Drosophila. Development 138(18):4097鈥?106. doi:10.1242/dev.062836
    37. Chung J, Whiteley M, Felsenfeld G (1993) A 5鈥?element of the chicken beta-globin domain serves as an insulator in human erythroid cells and protects against position effect in / Drosophila. Cell 74(3):505鈥?14
    38. Chung J脛, Bell A脛, Felsenfeld G (1997) Characterization of the chicken Beta-globin insulator. Proc Natl Acad Sci USA 94(2):575鈥?80
    39. Farrell CM, West AG, Felsenfeld G (2002) Conserved CTCF insulator elements flank the mouse and human 尾-globin loci. Mol Cell Biol 22(11):3820鈥?831. doi:10.1128/mcb.22.11.3820-3831.2002
    40. Guo M, Thomas J, Collins G, Timmermans MCP (2008) Direct repression of KNOX loci by the ASYMMETRIC LEAVES1 complex of / Arabidopsis. Plant Cell Online 20(1):48鈥?8. doi:10.1105/tpc.107.056127
    41. Hily J-M, Singer S, Yang Y, Liu Z (2009) A transformation booster sequence (TBS) from / Petunia hybrida functions as an enhancer-blocking insulator in / Arabidopsis thaliana. Plant Cell Rep 28(7):1095鈥?104. doi:10.1007/s00299-009-0700-8
    42. Ishii K, Arib G, Lin C, Van Houwe G, Laemmli UK (2002) Chromatin boundaries in budding yeast: the nuclear pore connection. Cell 109(5):551鈥?62
    43. Ishii K, Laemmli UK (2003) Structural and dynamic functions establish chromatin domains. Mol Cell 11(1):237鈥?48
    44. Palla F, Melfi R, Anello L, Di Bernardo M, Spinelli G (1997) Enhancer blocking activity located near the 3鈥?end of the sea urchin early H2A histone gene. Proc Natl Acad Sci USA 94(6):2272鈥?277
    45. Yang Y, Singer S, Liu Z (2011) Evaluation and comparison of the insulation efficiency of three enhancer-blocking insulators in plants. Plant Cell Tissue Organ Cult 105(3):405鈥?14. doi:10.1007/s11240-010-9880-8
    46. Heger P, George R, Wiehe T (2013) Successive gain of insulator proteins in arthropod evolution. Evolution 67(10):2945鈥?956. doi:10.1111/evo.12155
    47. Heger P, Marin B, Bartkuhn M, Schierenberg E, Wiehe T (2012) The chromatin insulator CTCF and the emergence of metazoan diversity. Proc Natl Acad Sci USA 109(43):17507鈥?7512. doi:10.1073/pnas.1111941109
    48. Heger P, Marin B, Schierenberg E (2009) Loss of the insulator protein CTCF during nematode evolution. BMC Mol Biol 10(1):84
    49. The ENCODE Project Consortium (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489(7414):57鈥?4. http://www.nature.com/nature/journal/v489/n7414/abs/nature11247.html#supplementary-information
    50. Cuddapah S, Jothi R, Schones DE, Roh T-Y, Cui K, Zhao K (2009) Global analysis of the insulator binding protein CTCF in chromatin barrier regions reveals demarcation of active and repressive domains. Genome Res 19(1):24鈥?2. doi:10.1101/gr.082800.108
    51. Kim TH, Abdullaev ZK, Smith AD, Ching KA, Loukinov DI, Green Roland D, Zhang MQ, Lobanenkov VV, Ren B (2007) Analysis of the vertebrate insulator protein CTCF-binding sites in the human genome. Cell 128(6):1231鈥?245. doi:10.1016/j.cell.2006.12.048
    52. Wang H, Maurano MT, Qu H, Varley KE, Gertz J, Pauli F, Lee K, Canfield T, Weaver M, Sandstrom R, Thurman RE, Kaul R, Myers RM, Stamatoyannopoulos JA (2012) Widespread plasticity in CTCF occupancy linked to DNA methylation. Genome Res 22(9):1680鈥?688. doi:10.1101/gr.136101.111
    53. Blumenthal T, Gleason KS (2003) / Caenorhabditis elegans operons: form and function. Nat Rev Genet 4(2):110鈥?18
    54. Boycheva S, Daviet L, Wolfender J-L, Fitzpatrick TB (2014) The rise of operon-like gene clusters in plants. Trends Plant Sci. doi:10.1016/j.tplants.2014.01.013
    55. Allen MA, Hillier LW, Waterston RH, Blumenthal T (2011) A global analysis of / C. elegans trans-splicing. Genome Res 21(2):255鈥?64. doi:10.1101/gr.113811.110
    56. Emberly E, Blattes R, Schuettengruber B, Hennion M, Jiang N, Hart C, Kas E, Cuvier O (2008) BEAF regulates cell-cycle genes through the controlled deposition of H3K9 methylation marks into its conserved / dual- / core binding sites. PLoS Biol 6(12):2896鈥?910
    57. Schoborg TA, Labrador M (2010) The phylogenetic distribution of non-CTCF insulator proteins is limited to insects and reveals that BEAF-32 is / Drosophila lineage specific. J Mol Evol 70(1):74鈥?4. doi:10.1007/s00239-009-9310-x
    58. Yang J, Ramos E, Corces VG (2012) The BEAF-32 insulator coordinates genome organization and function during the evolution of / Drosophila species. Genome Res 22(11):2199鈥?207. doi:10.1101/gr.142125.112
    59. Raab JR, Kamakaka RT (2010) Insulators and promoters: closer than we think. Nat Rev Genet 11(6):439鈥?46
    60. Spivakov M, Akhtar J, Kheradpour P, Beal K, Girardot C, Koscielny G, Herrero J, Kellis M, Furlong E, Birney E (2012) Analysis of variation at transcription factor binding sites in / Drosophila and humans. Genome Biol 13(9):R49
    61. Whitfield T, Wang J, Collins P, Partridge EC, Aldred S, Trinklein N, Myers R, Weng Z (2012) Functional analysis of transcription factor binding sites in human promoters. Genome Biol 13(9):R50
    62. Raab JR, Chiu J, Zhu J, Katzman S, Kurukuti S, Wade PA, Haussler D, Kamakaka RT (2012) Human tRNA genes function as chromatin insulators. EMBO J 31(2):330鈥?50. doi:10.1038/emboj.2011.406
    63. Valenzuela L, Dhillon N, Kamakaka RT (2009) Transcription independent insulation at TFIIIC-dependent insulators. Genetics 183(1):131鈥?48. doi:10.1534/genetics.109.106203
    64. Van Bortle K, Corces VG (2012) tDNA insulators and the emerging role of TFIIIC in genome organization. Biochem Soc Symp 3(6):277鈥?84. doi:10.4161/trns.21579
    65. Geyer PK (1997) The role of insulator elements in defining domains of gene expression. Curr Opin Genet Dev 7(2):242鈥?48
    66. Bourque G, Leong B, Vega VB, Chen X, Lee YL, Srinivasan KG, Chew J-L, Ruan Y, Wei C-L, Ng HH, Liu ET (2008) Evolution of the mammalian transcription factor binding repertoire via transposable elements. Genome Res 18(11):1752鈥?762. doi:10.1101/gr.080663.108
    67. Jacques PE, Jeyakani J, Bourque G (2013) The majority of primate-specific regulatory sequences are derived from transposable elements. PLoS Genet 9(5):e1003504. doi:10.1371/journal.pgen.1003504
    68. Johnson R, Gamblin RJ, Ooi L, Bruce AW, Donaldson IJ, Westhead DR, Wood IC, Jackson RM, Buckley NJ (2006) Identification of the REST regulon reveals extensive transposable element-mediated binding site duplication. Nucleic Acids Res 34(14):3862鈥?877. doi:10.1093/nar/gkl525
    69. Schmidt D, Schwalie Petra C, Wilson Michael D, Ballester B, Gon莽alves 脗, Kutter C, Brown Gordon D, Marshall A, Flicek P, Odom Duncan T (2012) Waves of retrotransposon expansion remodel genome organization and CTCF binding in multiple mammalian lineages. Cell 148(1鈥?):335鈥?48. doi:10.1016/j.cell.2011.11.058
    70. Conte C, Dastugue B, Vaury C (2002) Coupling of enhancer and insulator properties identified in two retrotransposons modulates their mutagenic impact on nearby genes. Mol Cell Biol 22(6):1767鈥?777. doi:10.1128/mcb.22.6.1767-1777.2002
    71. Modolell J, Bender W, Meselson M (1983) / Drosophila melanogaster mutations suppressible by the suppressor of Hairy-wing are insertions of a 7.3-kilobase mobile element. Proc Natl Acad Sci USA 80(6):1678鈥?682
    72. Guerrero PA, Maggert KA (2011) The CCCTC-binding factor (CTCF) of / Drosophila contributes to the regulation of the ribosomal DNA and nucleolar stability. PLoS One 6(1):e16401. doi:10.1371/journal.pone.0016401
    73. Galliano H, M眉ller AE, Lucht JM, Meyer P (1995) The transformation booster sequence from / Petunia hybrida is a retrotransposon derivative that binds to the nuclear scaffold. Mol Gen Genet 247(5):614鈥?22. doi:10.1007/BF00290353
    74. Mlyn谩rov谩 L, Hricov谩 A, Loonen A, Nap J-P (2003) The presence of a chromatin boundary appears to shield a transgene in tobacco from RNA silencing. Plant Cell Online 15(9):2203鈥?217. doi:10.1105/tpc.012070
    75. Crepaldi L, Policarpi C, Coatti A, Sherlock WT, Jongbloets BC, Down TA, Riccio A (2013) Binding of TFIIIC to SINE elements controls the relocation of activity-dependent neuronal genes to transcription factories. PLoS Genet 9(8):e1003699. doi:10.1371/journal.pgen.1003699
    76. Lunyak VV, Prefontaine GG, N煤帽ez E, Cramer T, Ju B-G, Ohgi KA, Hutt K, Roy R, Garc铆a-D铆az A, Zhu X, Yung Y, Montoliu L, Glass CK, Rosenfeld MG (2007) Developmentally regulated activation of a SINE B2 repeat as a domain boundary in organogenesis. Science 317(5835):248鈥?51. doi:10.1126/science.1140871
    77. Rom谩n AC, Gonz谩lez-Rico FJ, Molt贸 E, Hernando H, Neto A, Vicente-Garcia C, Ballestar E, G贸mez-Skarmeta JL, Vavrova-Anderson J, White RJ, Montoliu L, Fern谩ndez-Salguero PM (2011) Dioxin receptor and SLUG transcription factors regulate the insulator activity of B1 SINE retrotransposons via an RNA polymerase switch. Genome Res 21(3):422鈥?32. doi:10.1101/gr.111203.110
    78. Amelio AL, McAnany PK, Bloom DC (2006) A chromatin insulator-like element in the herpes simplex virus type 1 latency-associated transcript region binds CCCTC-binding factor and displays enhancer-blocking and silencing activities. J Virol 80(5):2358鈥?368. doi:10.1128/jvi.80.5.2358-2368.2006
    79. Chau CM, Zhang X-Y, McMahon SB, Lieberman PM (2006) Regulation of Epstein鈥揃arr virus latency type by the chromatin boundary factor CTCF. J Virol 80(12):5723鈥?732. doi:10.1128/jvi.00025-06
    80. Ertel MK, Cammarata AL, Hron RJ, Neumann DM (2012) CTCF occupation of the herpes simplex virus 1 genome is disrupted at early times postreactivation in a transcription-dependent manner. J Virol 86(23):12741鈥?2759. doi:10.1128/jvi.01655-12
    81. Kang H, Wiedmer A, Yuan Y, Robertson E, Lieberman PM (2011) Coordination of KSHV latent and lytic gene control by CTCF-cohesin mediated chromosome conformation. PLoS Pathog 7(8):e1002140. doi:10.1371/journal.ppat.1002140
    82. Stedman W, Kang H, Lin S, Kissil JL, Bartolomei MS, Lieberman PM (2008) Cohesins localize with CTCF at the KSHV latency control region and at cellular / c- / myc and / H19/Igf2 insulators. EMBO J 27(4):654鈥?66. http://www.nature.com/emboj/journal/v27/n4/suppinfo/emboj20081a_S1.html
    83. Tempera I, Wiedmer A, Dheekollu J, Lieberman PM (2010) CTCF prevents the epigenetic drift of EBV latency promoter Qp. PLoS Pathog 6(8):e1001048. doi:10.1371/journal.ppat.1001048
    84. Matharu NK, Hussain T, Sankaranarayanan R, Mishra RK (2010) Vertebrate homologue of / Drosophila GAGA factor. J Mol Biol 400(3):434鈥?47. doi:10.1016/j.jmb.2010.05.010
    85. Srivastava S, Puri D, Garapati H, Dhawan J, Mishra R (2013) Vertebrate GAGA factor associated insulator elements demarcate homeotic genes in the HOX clusters. Epigenet Chromatin 6(1):8
    86. Lespinet O, Wolf YI, Koonin EV, Aravind L (2002) The role of lineage-specific gene family expansion in the evolution of eukaryotes. Genome Res 12(7):1048鈥?059. doi:10.1101/gr.174302
    87. She W, Lin W, Zhu Y, Chen Y, Jin W, Yang Y, Han N, Bian H, Zhu M, Wang J (2010) The gypsy insulator of / Drosophila melanogaster, together with its binding protein suppressor of Hairy-wing, facilitate high and precise expression of transgenes in / Arabidopsis thaliana. Genetics 185(4):1141鈥?150. doi:10.1534/genetics.110.117960
    88. Gerasimova TI, Gdula DA, Gerasimov DV, Simonova O, Corces VG (1995) A / Drosophila protein that imparts directionality on a chromatin insulator is an enhancer of position-effect variegation. Cell 82(4):587鈥?97
    89. Pai CY, Lei EP, Ghosh D, Corces VG (2004) The centrosomal protein CP190 is a component of the gypsy chromatin insulator. Mol Cell 16(5):737鈥?48. doi:10.1016/j.molcel.2004.11.004
    90. Guruharsha KG, Rual J-F, Zhai B, Mintseris J, Vaidya P, Vaidya N, Beekman C, Wong C, Rhee DY, Cenaj O, McKillip E, Shah S, Stapleton M, Wan KH, Yu C, Parsa B, Carlson JW, Chen X, Kapadia B, VijayRaghavan K, Gygi SP, Celniker SE, Obar RA, Artavanis-Tsakonas S (2011) A protein complex network of / Drosophila melanogaster. Cell 147(3):690鈥?03
    91. Matzat LH, Dale RK, Moshkovich N, Lei EP (2012) Tissue-specific regulation of chromatin insulator function. PLoS Genet 8(11):e1003069
    92. Moshkovich N, Nisha P, Boyle PJ, Thompson BA, Dale RK, Lei EP (2011) RNAi-independent role for Argonaute2 in CTCF/CP190 chromatin insulator function. Genes Dev 25(16):1686鈥?701. doi:10.1101/gad.16651211
    93. Richter C, Oktaba K, Steinmann J, M眉ller J, Knoblich JA (2011) The tumour suppressor L(3)mbt inhibits neuroepithelial proliferation and acts on insulator elements. Nat Cell Biol 13(9):1029鈥?039
    94. Kurshakova M, Maksimenko O, Golovnin A, Pulina M, Georgieva S, Georgiev P, Krasnov A (2007) Evolutionarily conserved E(y)2/Sus1 protein is essential for the barrier activity of Su(Hw)-dependent insulators in / Drosophila. Mol Cell 27(2):332鈥?38
    95. Capelson M, Corces VG (2005) The ubiquitin ligase dTopors directs the nuclear organization of a chromatin insulator. Mol Cell 20(1):105鈥?16. doi:10.1016/j.molcel.2005.08.031
    96. Lei EP, Corces VG (2006) RNA interference machinery influences the nuclear organization of a chromatin insulator. Nat Genet 38(8):936鈥?41. http://www.nature.com/ng/journal/v38/n8/suppinfo/ng1850_S1.html
    97. Ramos E, Torre EA, Bushey AM, Gurudatta BV, Corces VG (2011) DNA topoisomerase II modulates insulator function in / Drosophila. PLoS One 6(1):e16562. doi:10.1371/journal.pone.0016562
    98. Kellner WA, Van Bortle K, Li L, Ramos E, Takenaka N, Corces VG (2013) Distinct isoforms of the / Drosophila Brd4 homologue are present at enhancers, promoters and insulator sites. Nucleic Acids Res. doi:10.1093/nar/gkt722
    99. Lim SJ, Boyle PJ, Chinen M, Dale RK, Lei EP (2013) Genome-wide localization of exosome components to active promoters and chromatin insulators in / Drosophila. Nucleic Acids Res 41(5):2963鈥?980. doi:10.1093/nar/gkt037
    100. Vorobyeva NE, Mazina MU, Golovnin AK, Kopytova DV, Gurskiy DY, Nabirochkina EN, Georgieva SG, Georgiev PG, Krasnov AN (2013) Insulator protein Su(Hw) recruits SAGA and Brahma complexes and constitutes part of Origin Recognition Complex-binding sites in the / Drosophila genome. Nucleic Acids Res 41(11):5717鈥?730. doi:10.1093/nar/gkt297
    101. Yang J, Sung E, Donlin-Asp PG, Corces VG (2013) A subset of / Drosophila myc sites remain associated with mitotic chromosomes colocalized with insulator proteins. Nat Commun 4:1464. http://www.nature.com/ncomms/journal/v4/n2/suppinfo/ncomms2469_S1.html
    102. Aoki T, Sarkeshik A, Yates J, Schedl P, Kadonaga J (2012) Elba, a novel developmentally regulated chromatin boundary factor is a hetero-tripartite DNA binding complex. eLife 1. doi:10.7554/eLife.00171
    103. Parelho V, Hadjur S, Spivakov M, Leleu M, Sauer S, Gregson HC, Jarmuz A, Canzonetta C, Webster Z, Nesterova T, Cobb BS, Yokomori K, Dillon N, Aragon L, Fisher AG, Merkenschlager M (2008) Cohesins functionally associate with CTCF on mammalian chromosome arms. Cell 132(3):422鈥?33
    104. Rubio ED, Reiss DJ, Welcsh PL, Disteche CM, Filippova GN, Baliga NS, Aebersold R, Ranish JA, Krumm A (2008) CTCF physically links cohesin to chromatin. Proc Natl Acad Sci USA 105(24):8309鈥?314. doi:10.1073/pnas.0801273105
    105. Wendt KS, Yoshida K, Itoh T, Bando M, Koch B, Schirghuber E, Tsutsumi S, Nagae G, Ishihara K, Mishiro T, Yahata K, Imamoto F, Aburatani H, Nakao M, Imamoto N, Maeshima K, Shirahige K, Peters J-M (2008) Cohesin mediates transcriptional insulation by CCCTC-binding factor. Nature 451(7180):796鈥?01. http://www.nature.com/nature/journal/v451/n7180/suppinfo/nature06634_S1.html
    106. Xiao T, Wallace J, Felsenfeld G (2011) Specific sites in the c terminus of CTCF interact with the sa2 subunit of the cohesin complex and are required for cohesin-dependent insulation activity. Mol Cell Biol 31(11):2174鈥?183. doi:10.1128/mcb.05093-11
    107. Hadjur S, Williams LM, Ryan NK, Cobb BS, Sexton T, Fraser P, Fisher AG, Merkenschlager M (2009) Cohesins form chromosomal / cis-interactions at the developmentally regulated IFNG locus. Nature 460(7253):410鈥?13. http://www.nature.com/nature/journal/v460/n7253/suppinfo/nature08079_S1.html
    108. Nativio R, Wendt KS, Ito Y, Huddleston JE, Uribe-Lewis S, Woodfine K, Krueger C, Reik W, Peters J-M, Murrell A (2009) Cohesin is required for higher-order chromatin conformation at the imprinted / IGF2- / H19 locus. PLoS Genet 5(11):e1000739. doi:10.1371/journal.pgen.1000739
    109. Li Y, Huang W, Niu L, Umbach D, Covo S, Li L (2013) Characterization of constitutive CTCF/cohesin loci: a possible role in establishing topological domains in mammalian genomes. BMC Genom 14(1):553
    110. Bartkuhn M, Straub T, Herold M, Herrmann M, Rathke C, Saumweber H, Gilfillan GD, Becker PB, Renkawitz R (2009) Active promoters and insulators are marked by the centrosomal protein 190. EMBO J 28(7):877鈥?88. http://www.nature.com/emboj/journal/v28/n7/suppinfo/emboj200934a_S1.html
    111. Galli GG, Carrara M, Francavilla C, Honnens de Lichtenberg K, Olsen JV, Calogero RA, Lund AH (2013) Genomic and proteomic analyses of Prdm5 reveal interactions with insulator binding proteins in embryonic stem cells. Mol Cell Biol 33(22):4504鈥?516. doi:10.1128/mcb.00545-13
    112. Gerstein MB, Kundaje A, Hariharan M, Landt SG, Yan K-K, Cheng C, Mu XJ, Khurana E, Rozowsky J, Alexander R, Min R, Alves P, Abyzov A, Addleman N, Bhardwaj N, Boyle AP, Cayting P, Charos A, Chen DZ, Cheng Y, Clarke D, Eastman C, Euskirchen G, Frietze S, Fu Y, Gertz J, Grubert F, Harmanci A, Jain P, Kasowski M, Lacroute P, Leng J, Lian J, Monahan H, O鈥橤een H, Ouyang Z, Partridge EC, Patacsil D, Pauli F, Raha D, Ramirez L, Reddy TE, Reed B, Shi M, Slifer T, Wang J, Wu L, Yang X, Yip KY, Zilberman-Schapira G, Batzoglou S, Sidow A, Farnham PJ, Myers RM, Weissman SM, Snyder M (2012) Architecture of the human regulatory network derived from ENCODE data. Nature 489(7414):91鈥?00. http://www.nature.com/nature/journal/v489/n7414/abs/nature11245.html#supplementary-information
    113. Cavalieri V, Melfi R, Spinelli G (2013) The / Compass- / like Locus, exclusive to the Ambulacrarians, encodes a chromatin insulator binding protein in the sea urchin embryo. PLoS Genet 9(9):e1003847. doi:10.1371/journal.pgen.1003847
    114. Akasaka K, Nishimura A, Takata K, Mitsunaga K, Mibuka F, Ueda H, Hirose S, Tsutsui K, Shimada H (1999) Upstream element of the sea urchin arylsulfatase gene serves as an insulator. Cell Mol Biol 45(5):555鈥?65
    115. Yajima M, Fairbrother WG, Wessel GM (2012) ISWI contributes to ArsI insulator function in development of the sea urchin. Development 139(19):3613鈥?622. doi:10.1242/dev.081828
    116. Li M, Belozerov VE, Cai HN (2010) Modulation of chromatin boundary activities by nucleosome-remodeling activities in / Drosophila melanogaster. Mol Cell Biol 30(4):1067鈥?076. doi:10.1128/mcb.00183-09
    117. Di Simone P, Di Leonardo A, Costanzo G, Melfi R, Spinelli G (2001) The sea urchin sns insulator blocks cmv enhancer following integration in human cells. Biochem Biophys Res Commun 284(4):987鈥?92. doi:10.1006/bbrc.2001.5082
    118. Nagaya S, Yoshida K, Kato K, Akasaka K, Shinmyo A (2001) An insulator element from the sea urchin / Hemicentrotus pulcherrimus suppresses variation in transgene expression in cultured tobacco cells. Mol Genet Genomics 265(3):405鈥?13
    119. Tajima S, Shinohara K, Fukumoto M, Zaitsu R, Miyagawa J, Hino S, Fan J, Akasaka K, Matsuoka M (2006) Ars insulator identified in sea urchin possesses an activity to ensure the transgene expression in mouse cells. J Biochem 139(4):705鈥?14. doi:10.1093/jb/mvj075
    120. Watanabe S, Watanabe S, Sakamoto N, Sato M, Akasaka K (2006) Functional analysis of the sea urchin-derived arylsulfatase (Ars)-element in mammalian cells. Genes Cells 11(9):1009鈥?021. doi:10.1111/j.1365-2443.2006.00996.x
    121. Corces VG (1995) Keeping enhancers under control. Nature 376(6540):462鈥?63
    122. Gerasimova TI, Byrd K, Corces VG (2000) A chromatin insulator determines the nuclear localization of DNA. Mol Cell 6(5):1025鈥?035
    123. Gerasimova TI, Corces VG (1998) Polycomb and trithorax group proteins mediate the function of a chromatin insulator. Cell 92(4):511鈥?21
    124. Gerasimova TI, Lei EP, Bushey AM, Corces VG (2007) Coordinated control of dCTCF and gypsy chromatin insulators in / Drosophila. Mol Cell 28(5):761鈥?72. doi:10.1016/j.molcel.2007.09.024
    125. Schoborg T, Rickels R, Barrios J, Labrador M (2013) Chromatin insulator bodies are nuclear structures that form in response to osmotic stress and cell death. J Cell Biol 202(2):261鈥?76. doi:10.1083/jcb.201304181
    126. Cai HN, Shen P (2001) Effects of / cis arrangement of chromatin insulators on enhancer-blocking activity. Science 291(5503):493鈥?95. doi:10.1126/science.291.5503.493
    127. Muravyova E, Golovnin A, Gracheva E, Parshikov A, Belenkaya T, Pirrotta V, Georgiev P (2001) Loss of insulator activity by paired Su(Hw) chromatin insulators. Science 291(5503):495鈥?98. doi:10.1126/science.291.5503.495
    128. Dekker J, Rippe K, Dekker M, Kleckner N (2002) Capturing chromosome conformation. Science 295(5558):1306鈥?311. doi:10.1126/science.1067799
    129. Splinter E, Heath H, Kooren J, Palstra R-J, Klous P, Grosveld F, Galjart N, de Laat W (2006) CTCF mediates long-range chromatin looping and local histone modification in the 尾-globin locus. Genes Dev 20(17):2349鈥?354. doi:10.1101/gad.399506
    130. Dixon JR, Selvaraj S, Yue F, Kim A, Li Y, Shen Y, Hu M, Liu JS, Ren B (2012) Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485(7398):376鈥?80. doi:10.1038/nature11082
    131. Duan Z, Andronescu M, Schutz K, McIlwain S, Kim YJ, Lee C, Shendure J, Fields S, Blau CA, Noble WS (2010) A three-dimensional model of the yeast genome. Nature 465(7296):363鈥?67. http://www.nature.com/nature/journal/v465/n7296/suppinfo/nature08973_S1.html
    132. Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, Amit I, Lajoie BR, Sabo PJ, Dorschner MO, Sandstrom R, Bernstein B, Bender MA, Groudine M, Gnirke A, Stamatoyannopoulos J, Mirny LA, Lander ES, Dekker J (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326(5950):289鈥?93. doi:10.1126/science.1181369
    133. Nora EP, Lajoie BR, Schulz EG, Giorgetti L, Okamoto I, Servant N, Piolot T, van Berkum NL, Meisig J, Sedat J, Gribnau J, Barillot E, Bluthgen N, Dekker J, Heard E (2012) Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature 485(7398):381鈥?85. http://www.nature.com/nature/journal/v485/n7398/abs/nature11049.html#supplementary-information
    134. Tanizawa H, Iwasaki O, Tanaka A, Capizzi JR, Wickramasinghe P, Lee M, Fu Z, Noma K-i (2010) Mapping of long-range associations throughout the fission yeast genome reveals global genome organization linked to transcriptional regulation. Nucleic Acids Res. doi:10.1093/nar/gkq955
    135. Hedges SB, Blair JE, Venturi ML, Shoe JL (2004) A molecular timescale of eukaryote evolution and the rise of complex multicellular life. BMC Evol Biol 4:2. doi:10.1186/1471-2148-4-2
    136. Phillips-Cremins Jennifer E, Sauria Michael EG, Sanyal A, Gerasimova Tatiana I, Lajoie Bryan R, Bell Joshua SK, Ong C-T, Hookway Tracy A, Guo C, Sun Y, Bland Michael J, Wagstaff W, Dalton S, McDevitt Todd C, Sen R, Dekker J, Taylor J, Corces Victor G (2013) Architectural protein subclasses shape 3D organization of genomes during lineage commitment. Cell 153(6):1281鈥?295. doi:10.1016/j.cell.2013.04.053
    137. Wood AM, Van Bortle K, Ramos E, Takenaka N, Rohrbaugh M, Jones BC, Jones KC, Corces VG (2011) Regulation of chromatin organization and inducible gene expression by a / Drosophila insulator. Mol Cell 44(1):29鈥?8. doi:10.1016/j.molcel.2011.07.035
    138. Junier I, Dale RK, Hou C, K茅p猫s F, Dean A (2012) CTCF-mediated transcriptional regulation through cell type-specific chromosome organization in the 尾-globin locus. Nucleic Acids Res. doi:10.1093/nar/gks536
    139. Comet I, Savitskaya E, Schuettengruber B, N猫gre N, Lavrov S, Parshikov A, Juge F, Gracheva E, Georgiev P, Cavalli G (2006) PRE-mediated bypass of two Su(Hw) insulators targets PcG proteins to a downstream promoter. Dev Cell 11(1):117鈥?24. doi:10.1016/j.devcel.2006.05.009
    140. Mallin DR, Myung JS, Patton JS, Geyer PK (1998) Polycomb group repression is blocked by the / Drosophila suppressor of Hairy-wing [SU(HW)] insulator. Genetics 148(1):331鈥?39
    141. Sigrist CJA, Pirrotta V (1997) Chromatin insulator elements block the silencing of a target gene by the / Drosophila polycomb response element (PRE) but allow trans interactions between PREs on different chromosomes. Genetics 147(1):209鈥?21
    142. Comet I, Schuettengruber B, Sexton T, Cavalli G (2011) A chromatin insulator driving three-dimensional polycomb response element (PRE) contacts and Polycomb association with the chromatin fiber. Proc Natl Acad Sci USA 108(6):2294鈥?299
    143. Li HB, M眉ller M, Bahechar IA, Kyrchanova O, Ohno K, Georgiev P, Pirrotta V (2011) Insulators, not polycomb response elements, are required for long-range interactions between polycomb targets in / Drosophila melanogaster. Mol Cell Biol 31(4):616鈥?25
    144. Fujioka M, Sun G, Jaynes JB (2013) The / Drosophila eve insulator / Homie promotes / eve expression and protects the adjacent gene from repression by polycomb spreading. PLoS Genet 9(10):e1003883. doi:10.1371/journal.pgen.1003883
    145. Fujioka M, Wu X, Jaynes JB (2009) A chromatin insulator mediates transgene homing and very long-range enhancer鈥損romoter communication. Development 136(18):3077鈥?087. doi:10.1242/dev.036467
    146. Iampietro C, Cl茅ard F, Gyurkovics H, Maeda RK, Karch F (2008) Boundary swapping in the / Drosophila bithorax complex. Development 135(24):3983鈥?987. doi:10.1242/dev.025700
    147. Golovnin A, Melnikova L, Volkov I, Kostuchenko M, Galkin AV, Georgiev P (2008) 鈥業nsulator bodies鈥?are aggregates of proteins but not of insulators. EMBO Rep 9(5):440鈥?45. doi:10.1038/embor.2008.32
    148. Golovnin A, Volkov I, Georgiev P (2012) SUMO conjugation is required for the assembly of / Drosophila Su(Hw) and Mod(mdg4) into insulator bodies that facilitate insulator complex formation. J Cell Sci 125(8):2064鈥?074. doi:10.1242/jcs.100172
    149. de Nadal E, Ammerer G, Posas F (2011) Controlling gene expression in response to stress. Nat Rev Genet 12(12):833鈥?45
    150. Seong KH, Li D, Shimizu H, Nakamura R, Ishii S (2011) Inheritance of stress-induced, ATF-2-dependent epigenetic change. Cell 145(7):1049鈥?061. doi:10.1016/j.cell.2011.05.029
    151. Weiner A, Chen HV, Liu CL, Rahat A, Klien A, Soares L, Gudipati M, Pfeffner J, Regev A, Buratowski S, Pleiss JA, Friedman N, Rando OJ (2012) Systematic dissection of roles for chromatin regulators in a yeast stress response. PLoS Biol 10(7):e1001369. doi:10.1371/journal.pbio.1001369
    152. Eaton ML, Galani K, Kang S, Bell SP, MacAlpine DM (2010) Conserved nucleosome positioning defines replication origins. Genes Dev 24(8):748鈥?53. doi:10.1101/gad.1913210
    153. MacAlpine HK, Gord芒n R, Powell SK, Hartemink AJ, MacAlpine DM (2010) / Drosophila ORC localizes to open chromatin and marks sites of cohesin complex loading. Genome Res 20(2):201鈥?11. doi:10.1101/gr.097873.109
    154. Xu J, Yanagisawa Y, Tsankov A, Hart C, Aoki K, Kommajosyula N, Steinmann K, Bochicchio J, Russ C, Regev A, Rando O, Nusbaum C, Niki H, Milos P, Weng Z, Rhind N (2012) Genome-wide identification and characterization of replication origins by deep sequencing. Genome Biol 13(4):R27
    155. Fu Y, Sinha M, Peterson CL, Weng Z (2008) The insulator binding protein CTCF positions 20 nucleosomes around its binding sites across the human genome. PLoS Genet 4(7):e1000138. doi:10.1371/journal.pgen.1000138
    156. Deshpande AM, Newlon CS (1996) DNA replication fork pause sites dependent on transcription. Science 272(5264):1030鈥?033. doi:10.1126/science.272.5264.1030
    157. Gonzalez S, Klatt P, Delgado S, Conde E, Lopez-Rios F, Sanchez-Cespedes M, Mendez J, Antequera F, Serrano M (2006) Oncogenic activity of Cdc6 through repression of the INK4/ARF locus. Nature 440(7084):702鈥?06. http://www.nature.com/nature/journal/v440/n7084/suppinfo/nature04585_S1.html
    158. Sideridou M, Zakopoulou R, Evangelou K, Liontos M, Kotsinas A, Rampakakis E, Gagos S, Kahata K, Grabusic K, Gkouskou K, Trougakos IP, Kolettas E, Georgakilas AG, Volarevic S, Eliopoulos AG, Zannis-Hadjopoulos M, Moustakas A, Gorgoulis VG (2011) Cdc6 expression represses E-cadherin transcription and activates adjacent replication origins. J Cell Biol 195(7):1123鈥?140. doi:10.1083/jcb.201108121
    159. Bergstr枚m R, Whitehead J, Kurukuti S, Ohlsson R (2007) CTCF regulates asynchronous replication of the imprinted H19/Igf2 domain. Cell Cycle 6(4):450鈥?54
    160. Cleary JD, Tome S, Lopez Castel A, Panigrahi GB, Foiry L, Hagerman KA, Sroka H, Chitayat D, Gourdon G, Pearson CE (2010) Tissue- and age-specific DNA replication patterns at the CTG/CAG-expanded human myotonic dystrophy type 1 locus. Nat Struct Mol Biol 17(99):1079鈥?087. http://www.nature.com/nsmb/journal/v17/n9/abs/nsmb.1876.html#supplementary-information
    161. Guillou E, Ibarra A, Coulon V, Casado-Vela J, Rico D, Casal I, Schwob E, Losada A, M茅ndez J (2010) Cohesin organizes chromatin loops at DNA replication factories. Genes Dev 24(24):2812鈥?822. doi:10.1101/gad.608210
    162. Price BD, D鈥橝ndrea AD (2013) Chromatin remodeling at DNA double-strand breaks. Cell 152(6):1344鈥?354
    163. Floyd SR, Pacold ME, Huang Q, Clarke SM, Lam FC, Cannell IG, Bryson BD, Rameseder J, Lee MJ, Blake EJ, Fydrych A, Ho R, Greenberger BA, Chen GC, Maffa A, Del Rosario AM, Root DE, Carpenter AE, Hahn WC, Sabatini DM, Chen CC, White FM, Bradner JE, Yaffe MB (2013) The bromodomain protein Brd4 insulates chromatin from DNA damage signalling. Nature. doi:10.1038/nature12147 . http://www.nature.com/nature/journal/vaop/ncurrent/abs/nature12147.html#supplementary-information
    164. Lankenau D-H, Peluso MV, Lankenau S (2000) The Su(Hw) chromatin insulator protein alters double-strand break repair frequencies in the / Drosophila germ line. Chromosoma 109(1鈥?):148鈥?60. doi:10.1007/s004120050423
    165. Baniahmad A, Steiner C, Kohne AC, Renkawitz R (1990) Modular structure of a chicken lysozyme silencer: involvement of an unusual thyroid hormone receptor binding site. Cell 61(3):505鈥?14
    166. Bell AC, West AG, Felsenfeld G (1999) The protein CTCF is required for the enhancer blocking activity of vertebrate insulators. Cell 98(3):387鈥?96
    167. Vostrov AA, Quitschke WW (1997) The zinc finger protein CTCF binds to the APBeta domain of the amyloid beta protein precursor promoter. J Biol Chem 272(52):33353鈥?3359
    168. Kagey MH, Newman JJ, Bilodeau S, Zhan Y, Orlando DA, van Berkum NL, Ebmeier CC, Goossens J, Rahl PB, Levine SS, Taatjes DJ, Dekker J, Young RA (2010) Mediator and cohesin connect gene expression and chromatin architecture. Nature 467(7314):430鈥?35. http://www.nature.com/nature/journal/v467/n7314/abs/nature09380.html#supplementary-information
    169. Lee B-K, Iyer VR (2012) Genome-wide studies of CCCTC-binding Factor (CTCF) and cohesin provide insight into chromatin structure and regulation. J Biol Chem 287(37):30906鈥?0913. doi:10.1074/jbc.R111.324962
    170. Soshnev AA, Baxley RM, Manak JR, Tan K, Geyer PK (2013) The insulator protein Suppressor of Hairy-wing is an essential transcriptional repressor in the / Drosophila ovary. Development 140(17):3613鈥?623. doi:10.1242/dev.094953
    171. Klug WS, Bodenstein D, King RC (1968) Oogenesis in the suppressor of hairy-wing mutant of / Drosophila melanogaster. I. Phenotypic characterization and transplantation experiments. J Exp Zool 167(2):151鈥?56. doi:10.1002/jez.1401670203
    172. Baxley RM, Soshnev AA, Koryakov DE, Zhimulev IF, Geyer PK (2011) The role of the Suppressor of Hairy-wing insulator protein in / Drosophila oogenesis. Dev Biol 356(2):398鈥?10. doi:10.1016/j.ydbio.2011.05.666
    173. Harrison DA, Gdula DA, Coyne RS, Corces VG (1993) A leucine zipper domain of the suppressor of Hairy-wing protein mediates its repressive effect on enhancer function. Genes Dev 7(10):1966鈥?978. doi:10.1101/gad.7.10.1966
    174. Soshnev AA, He B, Baxley RM, Jiang N, Hart CM, Tan K, Geyer PK (2012) Genome-wide studies of the multi-zinc finger / Drosophila Suppressor of Hairy-wing protein in the ovary. Nucleic Acids Res 40(12):5415鈥?431
    175. van Bemmel JG, Filion GJ, Rosado A, Talhout W, de Haas M, van Welsem T, van Leeuwen F, van Steensel B (2013) A network model of the molecular organization of chromatin in / Drosophila. Mol Cell 49(4):759鈥?71
    176. Berger C, Harzer H, Burkard TR, Steinmann J, van der Horst S, Laurenson A-S, Novatchkova M, Reichert H, Knoblich JA (2012) FACS purification and transcriptome analysis of / Drosophila neural stem cells reveals a role for klumpfuss in self-renewal. Cell Rep 2(2):407鈥?18
    177. Torrano V, Navascu茅s J, Docquier F, Zhang R, Burke LJ, Chernukhin I, Farrar D, Le贸n J, Berciano MT, Renkawitz R, Klenova E, Lafarga M, Delgado MD (2006) Targeting of CTCF to the nucleolus inhibits nucleolar transcription through a poly(ADP-ribosyl)ation-dependent mechanism. J Cell Sci 119(9):1746鈥?759. doi:10.1242/jcs.02890
    178. Yusufzai TM, Tagami H, Nakatani Y, Felsenfeld G (2004) CTCF tethers an insulator to subnuclear sites, suggesting shared insulator mechanisms across species. Mol Cell 13(2):291鈥?98. doi:10.1016/S1097-2765(04)00029-2
    179. Yu W, Ginjala V, Pant V, Chernukhin I, Whitehead J, Docquier F, Farrar D, Tavoosidana G, Mukhopadhyay R, Kanduri C, Oshimura M, Feinberg AP, Lobanenkov V, Klenova E, Ohlsson R (2004) Poly(ADP-ribosyl)ation regulates CTCF-dependent chromatin insulation. Nat Genet 36(10):1105鈥?110
    180. Ong C-T, Van Bortle K, Ramos E, Corces Victor G (2013) Poly(ADP-ribosyl)ation regulates insulator function and intrachromosomal interactions in / Drosophila. Cell 155(1):148鈥?59. doi:10.1016/j.cell.2013.08.052
    181. MacPherson MJ, Beatty LG, Zhou W, Du M, Sadowski PD (2009) The CTCF insulator protein is posttranslationally modified by SUMO. Mol Cell Biol 29(3):714鈥?25. doi:10.1128/mcb.00825-08
    182. Capelson M, Corces VG (2006) SUMO conjugation attenuates the activity of the gypsy chromatin insulator. EMBO J 25(9):1906鈥?914. doi:10.1038/sj.emboj.7601068
    183. Carmo-Fonseca M, Berciano MT, Lafarga M (2010) Orphan nuclear bodies. Cold Spring Harb Perspect Biol 2(9). doi:10.1101/cshperspect.a000703
    184. Klenova EM, Chernukhin IV, El-Kady A, Lee RE, Pugacheva EM, Loukinov DI, Goodwin GH, Delgado D, Filippova GN, Le贸n J, Morse Iii HC, Neiman PE, Lobanenkov VV (2001) Functional phosphorylation sites in the C-terminal region of the multivalent multifunctional transcriptional factor CTCF. Mol Cell Biol 21(6):2221鈥?234
    185. El-Kady A, Klenova E (2005) Regulation of the transcription factor, CTCF, by phosphorylation with protein kinase CK2. FEBS Lett 579(6):1424鈥?434. doi:10.1016/j.febslet.2005.01.044
    186. Kanduri C, Pant V, Loukinov D, Pugacheva E, Qi C-F, Wolffe A, Ohlsson R, Lobanenkov VV (2000) Functional association of CTCF with the insulator upstream of the H19 gene is parent of origin-specific and methylation-sensitive. Curr Biol 10(14):853鈥?56. doi:10.1016/S0960-9822(00)00597-2
    187. Pant V, Mariano P, Kanduri C, Mattsson A, Lobanenkov V, Heuchel R, Ohlsson R (2003) The nucleotides responsible for the direct physical contact between the chromatin insulator protein CTCF and the H19 imprinting control region manifest parent of origin-specific long-distance insulation and methylation-free domains. Genes Dev 17(5):586鈥?90. doi:10.1101/gad.254903
    188. Bell AC, Felsenfeld G (2000) Methylation of a CTCF-dependent boundary controls imprinted expression of the Igf2 gene. Nature 405(6785):482鈥?85
    189. Hark AT, Schoenherr CJ, Katz DJ, Ingram RS, Levorse JM, Tilghman SM (2000) CTCF mediates methylation-sensitive enhancer-blocking activity at the H19/Igf2 locus. Nature 405(6785):486鈥?89
    190. Filippova GN, Thienes CP, Penn BH, Cho DH, Hu YJ, Moore JM, Klesert TR, Lobanenkov VV, Tapscott SJ (2001) CTCF-binding sites flank CTG/CAG repeats and form a methylation-sensitive insulator at the DM1 locus. Nat Genet 28(4):335鈥?43
    191. Suzuki MM, Bird A (2008) DNA methylation landscapes: provocative insights from epigenomics. Nat Rev Genet 9(6):465鈥?76
    192. Shevtsov SP, Dundr M (2011) Nucleation of nuclear bodies by RNA. Nat Cell Biol 13(2):167鈥?73. http://www.nature.com/ncb/journal/v13/n2/abs/ncb2157.html#supplementary-information
    193. Matzat LH, Dale RK, Lei EP (2013) Messenger RNA is a functional component of a chromatin insulator complex. EMBO Rep 14(10):916鈥?22. doi:10.1038/embor.2013.118
  • 作者单位:Todd Schoborg (1) (2)
    Mariano Labrador (1)

    1. Department of Biochemistry, Cellular and Molecular Biology, The University of Tennessee, M407 Walters Life Sciences, 1414 Cumberland Avenue, Knoxville, TN, 37996, USA
    2. Laboratory of Molecular Machines and Tissue Architecture, Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, National Institutes of Health, 50 South Dr Rm 2122, Bethesda, MD, 20892, USA
  • ISSN:1420-9071
文摘
Of the numerous classes of elements involved in modulating eukaryotic chromosome structure and function, chromatin insulators arguably remain the most poorly understood in their contribution to these processes in vivo. Indeed, our view of chromatin insulators has evolved dramatically since their chromatin boundary and enhancer blocking properties were elucidated roughly a quarter of a century ago as a result of recent genome-wide, high-throughput methods better suited to probing the role of these elements in their native genomic contexts. The overall theme that has emerged from these studies is that chromatin insulators function as general facilitators of higher-order chromatin loop structures that exert both physical and functional constraints on the genome. In this review, we summarize the result of recent work that supports this idea as well as a number of other studies linking these elements to a diverse array of nuclear processes, suggesting that chromatin insulators exert master control over genome organization and behavior.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700