In vitro refolding with simultaneous purification of recombinant human parathyroid hormone (rhPTH 1᾿4) from Escherichia coli directed by protein folding size exclusion chromatography (PF-SEC): implication of solution additi
详细信息    查看全文
  • 作者:Sandeep Vemula ; Sushma Vemula ; Akshay Dedaniya…
  • 关键词:PFLC ; Size exclusion chromatography ; Purity ; Recovery yield ; Specific activity ; rhPTH
  • 刊名:Analytical and Bioanalytical Chemistry
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:408
  • 期:1
  • 页码:217-229
  • 全文大小:2,021 KB
  • 参考文献:1.Girotra M, Rubin MR, Bilezikian JP (2006) Rev Endocr Metab Disord 7:113–121CrossRef
    2.Wang C, Wang L, Geng X (2007) Biomed Chromatogr 21:1291–1296CrossRef
    3.Vallejo LF, Rinas U (2004) Microb Cell Factories 3:11CrossRef
    4.Geng X, Wang C (2007) J Chromatogr B 849:69–80CrossRef
    5.Jungbauer A, Kaar W, Schlegl R (2004) Curr Opin Biotechnol 15:487–494CrossRef
    6.Li M, Su Z-G, Janson J-C (2004) Protein Expr Purif 33:1–10CrossRef
    7.Swietnicki W (2006) Curr Opin Biotechnol 17:367–372CrossRef
    8.Wang L, Geng X (2014) Amino Acids 46:153–165CrossRef
    9.Wu D, Wang C, Geng X (2007) Biotechnol Prog 23:407–412CrossRef
    10.Bai Q, Kong Y, Geng X (2003) J Liq Chromatogr Relat Technol 26:683–695CrossRef
    11.Wang C-Z, Liu J-F, Geng X-D (2005) Chin Chem Lett 16:389–392
    12.Bai Q, Chen G, Liu J, Geng X (2007) Biotechnol Prog 23:1138–1142
    13.Lili W, Chaozhan W, Xindu G (2006) Biotechnol Lett 28:993–997CrossRef
    14.Rane AM, Jonnalagadda S, Li Z (2013) Protein Expr Purif 90:135–140CrossRef
    15.Krättli M, Müller‐Späth T, Morbidelli M (2013) Biotechnol Bioeng 110:2436–2444CrossRef
    16.Clark EDB (2001) Curr Opin Biotechnol 12:202–207CrossRef
    17.Tesio M, Golan K, Corso S, Giordano S, Schajnovitz A, Vagima Y, Shivtiel S, Kalinkovich A, Caione L, Gammaitoni L (2011) Blood 117:419–428CrossRef
    18.Morrow JA, Segall ML, Lund-Katz S, Phillips MC, Knapp M, Rupp B, Weisgraber KH (2000) Biochemistry 39:11657–11666CrossRef
    19.Liu Q, Lin J, Liu M, Tao X, Wei D, Ma X, Yang S (2007) Protein Expr Purif 54:212–219CrossRef
    20.Sastry GM, Adzhigirey M, Day T, Annabhimoju R, Sherman W (2013) J Comput-Aided Mol Design 27:221–234CrossRef
    21.Halgren TA, Murphy RB, Friesner RA, Beard HS, Frye LL, Pollard WT, Banks JL (2004) J Med Chem 47:1750–1759CrossRef
    22.Friesner RA, Murphy RB, Repasky MP, Frye LL, Greenwood JR, Halgren TA, Sanschagrin PC, Mainz DT (2006) J Med Chem 49:6177–6196CrossRef
    23.Park C-H, Son CK, Park JH, Chung IS (1997) Biotechnol Bioprocess Eng 2:113–116CrossRef
    24.Tantipolphan R, Romeijn S, Engelsman J, Torosantucci R, Rasmussen T, Jiskoot W (2010) J Pharm Biomed Anal 52:195–202CrossRef
    25.Gram H, Ramage P, Memmert K, Gamse R, Kocher HP (1994) Nat Biotechnol 12:1017–1023CrossRef
    26.Hagihara Y, Aimoto S, Fink AL, Goto Y (1993) J mole Biolg 231:180–184CrossRef
    27.Li M, Zhang G, Su Z (2002) J Chromatogr A 959:113–120CrossRef
    28.Liu H-N, Wang Y, Gong B-L, Geng X-D (2005) Acta Chim Sin 63:597–602
    29.Hutchinson MH, Chase HA (2006) J Chromatogr A 1128:125–132CrossRef
    30.Kumat T, Samuel D, Jayaraman G, Srimathi T, Yu C (1998) IUBMB Life 46:509–517CrossRef
    31.Xia Y, Park Y-D, Mu H, Zhou H-M, Wang X-Y, Meng F-G (2007) Int J Biol Macromolecules 40:437–443CrossRef
    32.Samuel D, Kumar TK, Ganesh G, Jayaraman G, Yang PW, Chang MM, Trivedi VD, Wang SL, Hwang KC, Chang DK, Yu C (2000) Protein Sci : Publ Protein Soc 9:344–352CrossRef
    33.Kim S-H, Yan Y-B, Zhou H-M (2006) Biochem Cell Biol 84:30–38CrossRef
    34.Hamada H, Arakawa T, Shiraki K (2009) Curr Pharm Biotechnol 10:400–407CrossRef
    35.Rudolph AS, Crowe JH (1986) Biophys J 50:423–430CrossRef
    36.Schobert B, Tschesche H (1978) Biochimica et Biophysica Acta (BBA)-General Subjects 541:270–277CrossRef
    37.Wang A, Bolen D (1997) Biochemistry 36:9101–9108CrossRef
    38.Wang F, Liu Y, Li J, Ma G, Su Z (2006) J Chromatogr A 1115:72–80CrossRef
    39.Moroi Y (1992) Micelles: theoretical and applied aspects. Springer
    40.Guo Q-R, Wei D-Z, Tong W-Y (2006) Protein Expr Purif 49:32–38CrossRef
    41.De Young LR, Fink AL, Dill KA (1993) Acc Chem Res 26:614–620CrossRef
    42.Kamerzell TJ, Joshi SB, McClean D, Peplinskie L, Toney K, Papac D, Li M, Middaugh CR (2007) Protein Sci 16:1193–1203CrossRef
  • 作者单位:Sandeep Vemula (1)
    Sushma Vemula (2)
    Akshay Dedaniya (1)
    Srinivasa Reddy Ronda (1)

    1. Centre for Bioprocess Technology, Department of Biotechnology, K L E F University, Green Fields, Vaddeswaram, Guntur, 522 502, Andhra Pradesh, India
    2. Department of Pharmacology, Kakatiya University, Vidyaranyapuri, Hanamkonda, Warangal, Telangana, 506009, India
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Analytical Chemistry
    Food Science
    Inorganic Chemistry
    Physical Chemistry
    Monitoring, Environmental Analysis and Environmental Ecotoxicology
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1618-2650
文摘
Recombinant proteins are frequently hampered by aggregation during the refolding and purification process. A simple and rapid method for in vitro refolding and purification of recombinant human parathyroid hormone (rhPTH 1–34) expressed in Escherichia coli with protein folding size exclusion chromatography (PF-SEC) was developed in the present work. Discrete effects of potential solution additives such as urea, polypolyethylene glycol, proline, and maltose on the refolding with simultaneous purification of rhPTH were investigated. The results of individual additives indicated that both maltose and proline had remarkable influences on the efficiency of refolding with a recovery yield of 65 and 66 % respectively. Further, the synergistic effect of these additives on refolding was also explored. These results demonstrate that the additive combinations are more effective for inhibiting protein aggregation during purification of rhPTH in terms of recovery yield, purity, and specific activity. The maltose and proline combination system achieved the highest renatured rhPTH having a recovery yield of 78 %, a purity of ≥99 %, and a specific activity of 3.31 × 103 cAMP pM/cell respectively, when compared to the classical dilution method yield (41 %) and purity (97 %). In addition, the role of maltose and proline in a combined system on protein aggregation and refolding has been explained. The molecular docking (in silico) scores of maltose (−10.91) and proline (−9.0) support the in vitro results.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700