Study of quantum correlation swapping with relative entropy methods
详细信息    查看全文
  • 作者:Chuanmei Xie ; Yimin Liu ; Jianlan Chen ; Zhanjun Zhang
  • 关键词:Quantum correlation swapping ; Three relative entropy ; based methods ; Werner state
  • 刊名:Quantum Information Processing
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:15
  • 期:2
  • 页码:809-832
  • 全文大小:644 KB
  • 参考文献:1.Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)CrossRef ADS
    2.Luo, S.L.: Quantum discord for two-qubit systems. Phys. Rev. A 77, 042303 (2008)CrossRef ADS
    3.Luo, S.L.: Using measurement-induced disturbance to characterize correlations as classical or quantum. Phys. Rev. A 77, 022301 (2008)CrossRef ADS
    4.Luo, S.L., Fu, S.S.: Geometric measure of quantum discord. Phys. Rev. A 82, 034302 (2010)CrossRef ADS MathSciNet
    5.Modi, K., Paterek, T., Son, W., Vedral, V., Williamson, M.: Unified view of quantum and classical correlations. Phys. Rev. Lett. 104, 080501 (2010)CrossRef ADS MathSciNet
    6.Dakic, B., Vedral, V., Brukner, C.: Necessary and sufficient condition for nonzero quantum discord. Phys. Rev. Lett. 105, 190502 (2010)CrossRef ADS
    7.Girolami, D., Paternostro, M., Adesso, G.: Faithful nonclassicality indicators and extremal quantum correlations in two-qubit states. J. Phys. A Math. Theor. 44, 352002 (2011)CrossRef
    8.Zhou, T., Cui, J., Long, G.L.: Measure of nonclassical correlation in coherence-vector representation. Phys. Rev. A 84, 062105 (2011)CrossRef ADS
    9.Zhang, Z.J.: Revised definitions of quantum dissonance and quantum discord. arXiv:​1011.​4333 [quant-ph]
    10.Rulli, C.C., Sarandy, M.S.: Global quantum discord in multipartite systems. Phys. Rev. A 84, 042109 (2011)CrossRef ADS
    11.Zhang, F.L., Chen, J.L.: Irreducible multiqutrit correlations in Greenberger–Horne–Zeilinger type states. Phys. Rev. A. 84, 062328 (2011)CrossRef ADS
    12.Wei, H.R., Ren, B.C., Deng, F.G.: Geometric measure of quantum discord for a two-parameter class of states in a qubit–qutrit system under various dissipative channels. Quantum Inf. Process. 12, 1109 (2013)CrossRef ADS MathSciNet MATH
    13.Ali, M., Rau, A.R.P., Alber, G.: Quantum discord for two-qubit X states. Phys. Rev. A 81, 042105 (2010)CrossRef ADS
    14.Hu, X.Y., et al.: Necessary and sufficient conditions for local creation of quantum correlation. Phys. Rev. A 85, 032102 (2012)CrossRef ADS
    15.Shi, M., Sun, C., Jiang, F., Yan, X., Du, J.: Optimal measurement for quantum discord of two-qubit states. Phys. Rev. A 85, 064104 (2012)CrossRef ADS
    16.Huang, Y.C.: Quantum discord for two-qubit X states: analytical formula with very small worst-case error. Phys. Rev. A 88, 014302 (2013)CrossRef ADS
    17.Huang, Y.C.: Scaling of quantum discord in spin models. Phys. Rev. B 89, 054410 (2014)CrossRef ADS
    18.Huang, Y.C.: Computing quantum discord is NP-complete. New J. Phys. 16, 033027 (2014)CrossRef ADS MathSciNet
    19.Giorda, P., Paris, M.G.A.: Gaussian quantum discord. Phys. Rev. Lett. 105, 020503 (2010)CrossRef ADS
    20.Hu, X., Fan, H., Zhou, D.L., Liu, W.M.: Quantum correlating power of local quantum channels. Phys. Rev. A 87, 032340 (2013)CrossRef ADS
    21.Hu, M.L., Fan, H.: Upper bound and shareability of quantum discord based on entropic uncertainty relations. Phys. Rev. A 88, 014105 (2013)CrossRef ADS
    22.Ye, B.L., Liu, Y.M., Chen, J.L., Liu, X.S., Zhang, Z.J.: Analytic expressions of quantum correlations in qutrit Werner states. Quantum Inf. Process. 12, 2355 (2013)CrossRef ADS MathSciNet MATH
    23.Tang, H.J., Liu, Y.M., Chen, J.L., Ye, B.L., Zhang, Z.J.: Analytic expressions of discord and geometric discord in Werner derivatives. Quantum Inf. Process. 13, 1331 (2014)CrossRef ADS MathSciNet MATH
    24.Li, G.F., Liu, Y.M., Tang, H.J., Yin, X.F., Zhang, Z.J.: Analytic expression of quantum correlations in qutrit Werner states undergoing local and nonlocal unitary operations. Quantum Inf. Process. 14, 559 (2015)CrossRef ADS MathSciNet MATH
    25.Xie, C.M., Liu, Y.M., Li, G.F., Zhang, Z.J.: A note on quantum correlations in Werner states under two collective noises. Quantum Inf. Process. 13, 2713 (2014)CrossRef ADS MathSciNet MATH
    26.Xie, C.M., Liu, Y.M., Xing, H., Chen, J.L., Zhang, Z.J.: Quantum correlation swapping. Quantum Inf. Process. 14, 653–679 (2015)CrossRef ADS MathSciNet MATH
    27.Madsen, L.S., Berni, A., Lassen, M., Andersen, U.L.: Experimental investigation of the evolution of Gaussian quantum discord in an open system. Phys. Rev. Lett. 109, 030402 (2012)CrossRef ADS
    28.Lanyon, B.P., Jurcevic, P., Hempel, C., et al.: Experimental generation of quantum discord via noisy processes. Phys. Rev. Lett. 111, 100504 (2013)CrossRef ADS
    29.Vogl, U., Glasser, R.T., Glorieux, Q., et al.: Experimental characterization of Gaussian quantum discord generated by four-wave mixing. Phys. Rev. A 87, 010101(R) (2013)CrossRef ADS
    30.Benedetti, C., Shurupov, A.P., Paris, M.G.A., et al.: Experimental estimation of quantum discord for a polarization qubit and the use of fidelity to assess quantum correlations. Phys. Rev. A 87, 052136 (2013)CrossRef ADS
    31.Madhok, V., Datta, A.: Interpreting quantum discord through quantum state merging. Phys. Rev. A 83, 032323 (2011)CrossRef ADS
    32.Dakic, B., Lipp, Y.O., Ma, X., et al.: Quantum discord as resource for remote state preparation. Nat. Phys. 8, 666 (2012)CrossRef
    33.Li, B., Fei, S.M., Wang, Z.X., Fan, H.: Assisted state discrimination without entanglement. Phys. Rev. A 85, 022328 (2012)CrossRef ADS
    34.Datta, A., Shaji, A., Caves, C.M.: Quantum discord and the power of one qubit. Phys. Rev. Lett. 100, 050502 (2008)CrossRef ADS
    35.Maziero, J., Céleri, L.C., Serra, R.M., Vedral, V.: Classical and quantum correlations under decoherence. Phys. Rev. A 80, 044102 (2009)CrossRef ADS MathSciNet
    36.Streltsov, A., Kampermann, H., Bruss, D.: Behavior of quantum correlations under local noise. Phys. Rev. Lett. 107, 170502 (2011)CrossRef ADS
    37.Ciccarello, F., Giovannetti, V.: Creating quantum correlations through local nonunitary memoryless channels. Phys. Rev. A 85, 010102(R) (2012)CrossRef ADS
  • 作者单位:Chuanmei Xie (1)
    Yimin Liu (2)
    Jianlan Chen (1)
    Zhanjun Zhang (1)

    1. School of Physics and Material Science, Anhui University, Hefei, 230039, Anhui, China
    2. Department of Physics, Shaoguan University, Shaoguan, 512005, China
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Physics
    Mathematics
    Engineering, general
    Computer Science, general
    Characterization and Evaluation Materials
  • 出版者:Springer Netherlands
  • ISSN:1573-1332
文摘
To generate long-distance shared quantum correlations (QCs) for information processing in future quantum networks, recently we proposed the concept of QC repeater and its kernel technique named QC swapping. Besides, we extensively studied the QC swapping between two simple QC resources (i.e., a pair of Werner states) with four different methods to quantify QCs (Xie et al. in Quantum Inf Process 14:653–679, 2015). In this paper, we continue to treat the same issue by employing other three different methods associated with relative entropies, i.e., the MPSVW method (Modi et al. in Phys Rev Lett 104:080501, 2010), the Zhang method (arXiv:​1011.​4333 [quant-ph]) and the RS method (Rulli and Sarandy in Phys Rev A 84:042109, 2011). We first derive analytic expressions of all QCs which occur during the swapping process and then reveal their properties about monotonicity and threshold. Importantly, we find that a long-distance shared QC can be generated from two short-distance ones via QC swapping indeed. In addition, we simply compare our present results with our previous ones. Keywords Quantum correlation swapping Three relative entropy-based methods Werner state

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700