Climatic characteristics of thunderstorm days and the influence of atmospheric environment in Northwestern China
详细信息    查看全文
  • 作者:Ye Yu ; Jiang-lin Li ; Jin Xie ; Chuan Liu
  • 关键词:Northwestern China ; Thunderstorm days ; Water vapor flux ; Environment condition
  • 刊名:Natural Hazards
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:80
  • 期:2
  • 页码:823-838
  • 全文大小:5,513 KB
  • 参考文献:Allen JT, Karoly DJ (2014) A climatology of Australian severe thunderstorm environments 1979–2011: inter-annual variability and ENSO influence. Int J Climatol 34:81–97. doi:10.​1002/​joc.​3667 CrossRef
    Allen JT, Tippett M, Sobel A (2015) Influence of El Niño-Southern Oscillation on US hail and tornado frequency. Nat Geosci 8:278–283. doi:10.​1038/​NGEO2385 CrossRef
    ARC (2007) Talking about disaster: guide for standard messages. The American Red Cross, Washington, DC. http://​www.​nws.​noaa.​gov/​om/​winter/​resources/​Complete_​Guide_​Disasters-redcross.​pdf
    Bechtold P, Lalaurette F, Ghelli A, Miller M (2003) Forecasts of severe convection. ECMWF Newslett 98:8–16
    Beringer J, Tapper N (2002) Surface energy exchanges and interactions with thunderstorms during the maritime continent thunderstorm experiment (MCTEX). J Geophys Res 107(D21):AAC 3-1–AAC 3-13. doi:10.​1029/​2001jd00143
    Bouwer LM (2011) Have disaster losses increased due to anthropogenic climate change? Bull Am Meteorol Soc 92:39–46. doi:10.​1175/​2010BAMS3092.​1 CrossRef
    Brooks HE (2009) Proximity soundings for severe convection for Europe and the United States from reanalysis data. Atmos Res 93:546–553. doi:10.​1016/​j.​atmosres.​2008.​10.​005 CrossRef
    Brooks HE, Lee JW, Craven JP (2003) The spatial distribution of severe thunderstorm and tornado environments from global reanalysis data. Atmos Res 67:73–94. doi:10.​1016/​S0169-8095(03)00045-0 CrossRef
    Changnon SA (1988a) Climatography of thunder events in the conterminous United States. Part II: spatial aspects. J Clim 1:399–405. doi:10.​1175/​1520-0442(1988)001<0399:​COTEIT>2.​0.​CO;2 CrossRef
    Changnon SA (1988b) Climatography of thunder events in the conterminous United States. Part I: temporal aspects. J Clim 1:389–398. doi:10.​1175/​1520-0442(1988)001<0389:​COTEIT>2.​0.​CO;2 CrossRef
    Changnon SA (2003) Shifting economic impacts from weather extremes in the United States: a result of societal changes, not global warming. Nat Hazards 29(2):273–290. doi:10.​1023/​A:​1023642131794 CrossRef
    Chen SR, Zhu WJ, Zhou B (2009) Climate characteristic and variation tendency of thunderstorm in China. Trans Atmos Sci 32(5):703–710 (in Chinese)
    Cook AR, Schaefer JT (2008) The relation of El Niño-Southern Oscillation (ENSO) to winter tornado outbreaks. Mon Weather Rev 136:3121–3137. doi:10.​1175/​2007mwr2171.​1 CrossRef
    Cui XD, Gao YQ, Sun JQ (2014) The response of the East Asian summer monsoon to strong tropical volcanic eruptions. Adv Atmos Sci 31(6):1245–1255. doi:10.​1007/​s00376-014-3239-8 CrossRef
    De U, Dube R, Rao GP (2005) Extreme weather events over India in the last 100 years. J Indian Geophys Union 9(3):173–187
    Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer A, Haimberger L, Healy SB, Hersbach H, Hólm EV, Isaksen L, Kållberg Köhler PM, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette JJ, Park BK, Peubey C, de Rosnay P, Tavolato C, Thépaut JN, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597. doi:10.​1002/​qj.​828 CrossRef
    Ding R, Ha K-J, Li J (2010) Interdecadal shift in the relationship between the East Asian summer monsoon and the tropical Indian Ocean. Clim Dyn 34:1059–1071. doi:10.​1007/​s00382-009-0555-2 CrossRef
    Ding YH, Sun Y, Liu YY et al (2013) Interdecadal and interannual variabilities of the Asian summer monsoon and its projection of future change. Chin J Atmos Sci 37(2):253–280. doi:10.​3878/​j.​issn.​1006-9895.​2012 (in Chinese)
    Doswell CA III (2001) severe convective storms—an overview. Meteorol Monogr 28(50):1–26. doi:10.​1175/​0065-9401-28.​50.​1 CrossRef
    Doswell CA, Rasmussen EN (1994) The effect of neglecting the virtual temperature correction CAPE calculations. Weather Forecast 9:625–629. doi:10.​1175/​1520-0434(1994)009%3c0625:​teontv%3e2.​0.​co;2 CrossRef
    Doswell CA III, Brooks HE, Maddox RA (1996) Flash flood forecasting: an ingredients-based methodology. Weather Forecast 11(4):560–581. doi:10.​1175/​1520-0434(1996)011%3c0560:​FFFAIB%3e2.​0.​CO;2 CrossRef
    Dowdy A (2015) Seasonal forecasting of lightning and thunderstorm activity in tropical and temperate regions of the world. Sci Rep (in press)
    Fasullo J, Webster PJ (2003) A hydrological definition of the Indian summer monsoon onset and withdrawal. J Clim 16:3200–3211. doi:10.​1175/​1520-0442(2003)016<3200a:​AHDOIM>2.​0.​CO;2 CrossRef
    Gensini VA, Ashley WS (2011) Climatology of potentially severe convective environments from the North American regional reanalysis. Electron J Severe Storms Meteorol 6:1–40
    Gong CS, Zeng SL, Wang JJ et al (2013) Analyses on climatic characteristics of thunderstorm in China in recent 30 years. Plateau Meteorol 32(5):1442–1449 (in Chinese)
    Hamed KH (2008) Trend detection in hydrologic data: the Mann–Kendall trend test under the scaling hypothesis. J Hydrol 349(3–4):350–363. doi:10.​1016/​j.​jhydrol.​2007.​11.​009 CrossRef
    Hirsch RM, Slack JR, Smith RA (1982) Techniques of trend analysis for monthly water-quality data. Water Resour Res 18(1):107–121. doi:10.​1029/​WR018i001p00107 CrossRef
    Hu Y, Duan YH (2006) Climatic change related to thunderstorm days and proble impact factors in Shanghai. Period Ocean Univ China 36(4):588–594 (in Chinese)
    Ji XL, Mu JH, Zhou H et al (2009) Statistic climate characteristics and thunderstorm weather tendency in Ningxia during the last 45 years. J Desert Res 29(4):744–749 (in Chinese)
    Johns RH, Doswell CA (1992) Severe local storms forecasting. Weather Forecast 7(4):588–612. doi:10.​1175/​1520-0434(1992)007%3c0588:​slsf%3e2.​0.​co;2 CrossRef
    Kendall MG (1975) Rank correlation methods. Charles Griffin, London
    Kobayashi S, Ota Y, Harada Y, Ebita A, Moriya M, Onoda H, Onogi K, Kamahori H, Kobayashi C, Endo H, Miyaoka K, Takahashi K (2015) The JRA-55 reanalysis: general specifications and basic characteristics. J Meteorol Soc Jpn 93(1):5–48. doi:10.​2151/​jmsj.​2015-001 CrossRef
    Koo CC (1978) The climatic characteristics of thunderstorms in China. Acta Geogr Sin 33(1):42–49 (in Chinese)
    Lee S-K, Atlas R, Enfield DB, Wang C, Liu H (2013) Is there an optimal ENSO pattern that enhances large-scale atmospheric processes conducive to tornado outbreaks in the United States? J Clim 26(5):1626–1642. doi:10.​1175/​jcli-d-12-00128.​1 CrossRef
    Leigh R, Kuhnel I (2001) Hailstorm loss modelling and risk assessment in the Sydney region, Australia. Nat Hazards 24:171–185. doi:10.​1007/​s00382-009-0555-2 CrossRef
    Li ZR, Kang FQ, Ma SP (2005) Analysis on climatic characteristics of thunderstorm in northwest China. J Catastrophol 20(2):83–88 (in Chinese)
    Li XZ, Ma ZG, Liu XD (2006) Inter-decadal characteristics of aridification over Northern China associated with the variation of atmospheric circulation during the past 50 years. Chin J Atmos Sci 30(2):277–284 (in Chinese)
    Lin J, Qu XB (2008) Spatial and temporal characteristics of thunderstorm in China. Meteorol Mon 34(11):22–30 (in Chinese)
    Ma ZG, Fu CB (2003) Interannual characteristics of the surface hydrological variables over the arid and semi-arid areas of northern China. Glob Planet Chang 37:189–200. doi:10.​1016/​s0921-8181(02)00203-5
    Mann HB (1945) Non-parametric test against trend. Econometrika 13:245–259CrossRef
    Pattiaratchi C, Wijeratne EMS (2014) Observations of meteorological tsunamis along the south-west Australian coast. Nat Hazards 74(1):281–303. doi:10.​1007/​s11069-014-1263-8 CrossRef
    Paulikas MJ (2014) Examining population bias relative to severe thunderstorm hazard reporting trends in the Atlanta, GA metropolitan region. Meteorol Appl 21(3):494–503. doi:10.​1002/​met.​1394 CrossRef
    Pinto O (2014) Thunderstorm climatology of Brazil: ENSO and tropical Atlantic connections. Int J Climatol. doi:10.​1002/​joc.​4022
    Qian WM, Luo YL, Zhang RH, Gong Y (2011) The heavy rainfall event leading to the large debris flow at Zhouqu. J Appl Meteorol Sci 22(4):385–397
    Saha U, Midya S, Das G (2011) The effect of the variable component of 10.7 cm solar flux on the thunderstorm frequency over Kolkata and its relation with ozone depletion mechanism. Pac J Sci Technol 12:591–597
    Sen PK (1968) Estimates of the regression coefficient based on Kendall’s tau. J Am Stat As 63:1379–1389. doi:10.​1080/​01621459.​1968.​10480934 CrossRef
    Shi J, Cui L (2012) Characteristics of high impact weather and meteorological disaster in Shanghai, China. Nat Hazards 60(3):951–969. doi:10.​1007/​s11069-011-9877-6 CrossRef
    Trenberth KE (1991) Climate diagnostics from global analyses: conservation of mass in ECMWF analyses. J Clim 4:707–722. doi:10.​1175/​1520-0442(1991)004%3c0707:​CDFGAC%3e2.​0.​CO;2 CrossRef
    Wang Y, Zhou L (2005) Observed trends in extreme precipitation events in China during 1961–2001 and the associated changes in large-scale circulation. Geophys Res Lett. doi:10.​1029/​2005GL022574
    Wang BJ, Huang YX, He JH et al (2004) Relation between vapour transportation in the period of East Asian summer monsoon and drought in Northwest China. Plateau Meteorol 23(6):912–918 (in Chinese)
    Wang KL, Jiang H, Zhao HY (2005) Atmospheric water vapor transport from westerly and monsoon over the Northwest China. Adv Water Sci 16(3):432–438 (in Chinese)
    Wang B, Huang F, Wu ZW, Yang J, Fu X, Kikuchi K (2009) Multi-scale climate variability of the South China sea monsoon: a review. Dyn Atmos Oceans 47:15–37. doi:10.​1016/​j.​dynatmoce.​2008.​09.​004 CrossRef
    Wu Z, Li J, Jiang Z, He J, Zhu X (2012) Possible effects of the North Atlantic oscillation on the strengthening relationship between the East Asian summer monsoon and ENSO. Int J Climatol 32(5):794–800. doi:10.​1002/​joc.​2309 CrossRef
    Xie B, Zhang Q, Wang Y (2008) Trends in hail in China during 1960–2005. Geophys Res Lett. doi:10.​1029/​2008gl034067
    Yu M, Li Q, Hayes MJ, Svoboda MD, Heim RR (2014) Are droughts becoming more frequent or severe in China based on the standardized precipitation evapotranspiration index: 1951–2010? Int J Climatol 34(3):545–558. doi:10.​1002/​joc.​3701 CrossRef
    Zhai X, Xia J, Zhang Y (2014) Water quality variation in the highly disturbed Huai River Basin, China from 1994 to 2005 by multi-statistical analyses. Sci Total Environ 496:594–606. doi:10.​1016/​j.​scitotenv.​2014.​06.​101 CrossRef
    Zhang MF, Feng X (1998) A study on climatic features and anomalies of the thunderstorm in China. J Trop Meteorol 14(2):156–162 (in Chinese)
    Zhao P, Zhou ZJ (2005) East Asian subtropical summer monsoon index and its relationships to rainfall. Acta Meteorol Sin 23(1):18–28
    Zou X, Yang H (2007) Simulation on the thunderstorm weather processes caused by northeast cold vortex based on MM5 and WRF models. J Meteorol Environ 23(6):0–25 (in Chinese)
  • 作者单位:Ye Yu (1) (2)
    Jiang-lin Li (1) (2) (3)
    Jin Xie (1) (2) (3)
    Chuan Liu (1) (2) (3)

    1. Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Science, Lanzhou, 730000, Gansu, People’s Republic of China
    2. Pingliang Land Surface Process and Severe Weather Research Station, Chinese Academy of Science, Pingliang, 744015, Gansu, People’s Republic of China
    3. University of Chinese Academy of Science, Beijing, 100049, People’s Republic of China
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Earth sciences
    Hydrogeology
    Geophysics and Geodesy
    Geotechnical Engineering
    Civil Engineering
    Environmental Management
  • 出版者:Springer Netherlands
  • ISSN:1573-0840
文摘
The annual trend in thunderstorm activity during a 42-year period from 1971 to 2012 over the transition region of the Tibetan Plateau and the Loess Plateau in China was documented. The delimiting factor was the number of days with thunderstorms collected from 64 stations over the study area. Reanalysis data from JRA-55, NCEP and ERA-Interim were used to understand the underlying reasons for the trend in the number of thunderstorm days. The results show that thunderstorms in this area were most active in the summer, followed by spring and autumn, while no thunderstorms were reported during the winter. Two centers with high number of thunderstorm days were revealed, one of which is located in the Gannan area close to the Tibetan Plateau and the other is in the Yongdeng and Wushaoling area east of the Qilian Mountains. The Loess Plateau in comparison has a lower frequency of thunderstorm days. There was no trend in the mean annual thunderstorm days from 1971 to the early 1990s, but a significant decreasing trend occurred afterward (until 2012), with the most important trend occurring during the summer when thunderstorms were the most numerous. The decrease in thunderstorm days was associated with a nonsignificant decrease in the convective available potential energy. Circulation patterns and moisture fluxes were analyzed to understand the observed difference between the two periods. Years with relatively high thunderstorm days (1971–1990) were characterized by relatively high water vapor flux to the study region, as well as having the western ridge of the western Pacific subtropical high located further east than during the years 1991–2012 with fewer thunderstorms. There were also relatively low 500 hPa geopotential heights in the north of China and the Mongolia in the earlier period. It is suggested that the relative changes in the position of the subtropical high and the 500 hPa trough are related to changes in the intensity of the Asian summer monsoon.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700