用户名: 密码: 验证码:
Sn-doped In2O3 nanowires: enhancement of electrical field emission by a selective area growth
详细信息    查看全文
  • 作者:Wen-Chih Chang (1)
    Cheng-Hsiang Kuo (1)
    Chien-Chang Juan (1)
    Pei-Jung Lee (1)
    Yu-Lun Chueh (1)
    Su-Jien Lin (1)
  • 关键词:ITO ; Nanowire ; Field emission ; Screen effect.
  • 刊名:Nanoscale Research Letters
  • 出版年:2012
  • 出版时间:December 2012
  • 年:2012
  • 卷:7
  • 期:1
  • 全文大小:516KB
  • 参考文献:1. Ngamsinlapasathian S, Sreethawong T, Suzuki Y, Yoshikawa S: Doubled layered ITO/SnO 2 conducting glass for substrate of dye-sensitized solar cells. / Sol Energy Mater Sol Cells 2006, 90:2129-140. CrossRef
    2. Kamei M, Yagami T, Takaki S, Shigesato Y: Heteroepitaxial growth of tin-doped indium oxide films on single crystalline yttria stabilized zirconia substrates. / Appl Phys Lett 1994, 64:2712-714. CrossRef
    3. Ohta H, Orita M, Hirano M, Tanji H, Kawazoe H, Hosono H: Highly electrically conductive indium–tin–oxide thin films epitaxially grown on yttria-stabilized zirconia (100) by pulsed-laser deposition. / Appl Phys Lett 2000, 76:2740. CrossRef
    4. O’Dwyer C, Szachowicz M, Visimberga G, Lavayen V, Newcomb S, Torres C: Bottom-up growth of fully transparent contact layers of indium tin oxide nanowires for light-emitting devices. / Nat Nanotechnol 2009, 4:239-44. CrossRef
    5. Gao J, Chen R, Li DH, Jiang L, Ye JC, Ma XC, Chen XD, Xiong QH, Sun HD, Wu T: UV light emitting transparent conducting tin-doped indium oxide (ITO) nanowires. / Nanotechnol 2011, 22:195706. CrossRef
    6. Wan Q, Feng P, Wang TH: Vertically aligned tin-doped indium oxide nanowire arrays: epitaxial growth and electron field emission properties. / Appl Phys Lett 2006, 89:123102. CrossRef
    7. Wan Q, Dattoli E, Fung W, Guo W, Chen Y, Pan X, Lu W: High-performance transparent conducting oxide nanowires. / Nano Lett 2006, 6:2909-915. CrossRef
    8. Peng XS, Meng GW, Wang XF, Wang YW, Zhang J, Liu X, Zhang LD: Synthesis of oxygen-deficient indium-tin-oxide (ITO) nanofibers. / Chem Mater 2002, 14:4490-493. CrossRef
    9. Lee SY, Lee CY, Lin P, Tseng TY: Low temperature synthesized Sn doped indium oxide nanowires. / Nanotechnol 2005, 16:451-57. CrossRef
    10. Orlandi MO, Aguiar R, Lanfredi AJC, Longo E, Varela JA, Leite ER: Tin-doped indium oxide nanobelts grown by carbothermal reduction method. / Appl Phys A: Mater Sci Process 2005, 80:23-5. CrossRef
    11. Wan Q, Wei M, Zhi D, MacManus-Driscoll JL, Blamire MG: Epitaxial growth of vertically aligned and branched single‐crystalline tin‐doped indium oxide nanowire arrays. / Adv Mater 2006, 18:234-38. CrossRef
    12. Pokaipisit A, Udomkan N, Limsuwan P: Nanostructure and properties of indium tin oxide (ITO) films produced by electron beam evaporation. / Mod Phys Lett B 2006, 20:1049-058. CrossRef
    13. Fung MK, Sun YC, Ng AMC, Chen XY, Wong KK, Djuri?i-c AB, Chan WK: Indium tin oxide nanowires growth by dc sputtering. / Appl Phys A 2011, 104:1075-080. CrossRef
    14. Yong TK, Tan SS, Nee CH, Yap SS, Kee YY, Gy?rgy S, Zsolt Endre H, Jason M, Yoke-Khin Y, Teck-Yong T: Pulsed laser deposition of indium tin oxide nanowires in argon and helium. / Mater Lett 2012, 66:280-81. CrossRef
    15. Wu JM: Characterizing and comparing the cathodoluminesence and field emission properties of Sb doped SnO 2 and SnO 2 nanowires. / Thin Solid Films 2009, 517:1289-293. CrossRef
    16. Chen LH, Hong KH, Xiao DQ, Hsieh WJ, Lai SH, Lin TC, Shieu FS, Chen KJ, Cheng HC: Role of extrinsic atoms on the morphology and field emission properties of carbon nanotubes. / Appl Phys Lett 2003, 82:4334. CrossRef
    17. Fang CW, Wu JM, Lee LT, Hsien YH, Lo SC, Chen CH: ZnO:Al nanostructures synthesized on pre-deposited aluminum (Al)/Si template: formation, photoluminescence and electron field emission. / Thin Solid Films 2008, 517:1268-273. CrossRef
    18. Bonard JM, Weiss N, Kind H, Stockli T, Forro L, Kern K, Chatelain A: Tuning the field emission properties of patterned carbon nanotube films. / Adv Mater 2001, 13:184. CrossRef
    19. Liu N, Fang G, Zeng W, Long H, Yuan L, Zhao X: Diminish the screen effect in field emission via patterned and selective edge growth of ZnO nanorod arrays. / Appl Phys Lett 2009, 95:153505. CrossRef
    20. Fan HJ, Fuhrmann B, Scholz R, Syrowatka F, Dadgar A, Krost A, Zacharias M: Well-ordered ZnO nanowire arrays on GaN substrate fabricated via nanosphere lithography. / J Cryst Growth 2006, 287:34-8. CrossRef
    21. Kim YJ, Yoo J, Kwon BH, Hong YJ, Lee CH, Yi GC: Position-controlled ZnO nanoflower arrays grown on glass substrates for electron emitter application. / Nanotechnol 2008, 19:315202. CrossRef
    22. Ahsanulhaq Q, Kim JH, Hahn YB: Controlled selective growth of ZnO nanorod arrays and their field emission properties. / Nanotechnol 2007, 18:485307. CrossRef
    23. Nishio K, Sei T, Tsuchiya T: Dip-coating of ITO films. / J Mater Sci 1996, 31:1761-766. CrossRef
    24. Chang WC, Kuo CH, Lee PJ, Chueh YL, Lin SJ: Synthesis of single crystal Sn-doped In2O3 nanowires: size-dependent conductive characteristic. / Phys Chem Chem Phys 2012, 14:13041-3045. CrossRef
    25. Wagner RS, Ellis WC: Vapor‐liquid‐solid mechanism of single crystal growth. / Appl Phys Lett 1964, 4:89-0. CrossRef
    26. Valderrama J, Jacob KT: Vapor pressure and dissociation energy of (In 2 O). / Thermochim Acta 1977, 21:215-24. CrossRef
    27. Liang C, Meng G, Lei Y, Phillipp F, Zhang L: Catalytic growth of semiconducting In 2 O 3 nanofibers. / Adv Mater 2001, 13:1330. CrossRef
    28. Fan JCC, Goodenough JB: X-ray photoemission spectroscopy studies of Sn-doped indium-oxide films. / J Appl Phys 1977, 48:3524-531. CrossRef
    29. Wu WF, Chiou BS: Effect of oxygen concentration in the sputtering ambient on the microstructure, electrical and optical properties of radio-frequency magnetron-sputtered indium tin oxide films. / Semicond Part Sci Technol 1996, 11:196-02. CrossRef
    30. Carvalho CN, Rego AMB, Amaral A, Brogueira P, Lavareda G: Effect of substrate temperature on the surface structure, composition and morphology of indium-tin oxide films. / Surf CoatTechnol 2000, 124:70-5. CrossRef
    31. Fowler RH, Nordheim L: Electron emission in intense electric fields. / Proc R Soc London, Ser A 1928, 119:173-81. CrossRef
    32. Edgcombe CJ, Valdre U: Experimental and computational study of field emission characteristics from amorphous carbon single nanotips grown by carbon contamination - I. / Experiments and computation. Philos Mag B 2002, 82:987.
    33. Filip V, Nicolaescu D, Tanemura M, Okuyama F: Modeling the electron field emission from carbon nanotube films. / Ultramicroscopy 2001, 89:39-9. CrossRef
    34. Chueh YL, Chou LJ, Cheng SL, He JH, We WW, Chen LJ: Synthesis of taperlike Si nanowires with strong field emission. / Appl Phys Lett 2005, 86:133112. CrossRef
    35. Ok YW, Seong TY, Choi CJ, Tu KN: Field emission from Ni-disilicide nanorods formed by using implantation of Ni in Si coupled with laser annealing. / Appl Phys Lett 2006, 88:043106. CrossRef
    36. Lee KS, Mo YH, Nahm KS, Shim HW, Suh EK, Kim JR, Kim JJ: Anomalous growth and characterization of carbon-coated nickel silicide nanowires. / Chem Phys Lett 2004, 384:215. CrossRef
    37. He JH, Wu TH, Hsin CL, Li KM, Chen LJ, Chueh YL, Chou LJ, Wang ZL: Beaklike SnO2 nanorods with strong photoluminescent and field-emission properties. / Small 2006, 2:116. CrossRef
    38. Zhu W, Kochanski GP, Jin S, Seibles L, Jacobson D, McCormack CM, White AE: Electron field emission from ion implanted diamond. / Appl Phys Lett 1995, 67:1157. CrossRef
    39. Tseng YK, Huang CJ, Cheng HM, Kin IN, Liu KS, Chen IC: Characterization and field-emission properties of needle-like zinc oxide nanowires grown vertically on conductive zinc oxide films. / Adv Funct Mater 2003, 87:73109.
    40. Li SY, Lin P, Lee CY, Tseng TY: Field emission and photo fluorescence characteristics of zinc oxide nanowires synthesized by a metal catalyzed vapor–liquid–solid process. / J Appl Phys 2004, 95:3711-716. CrossRef
    41. Chen ZH, Tang YB, Liu Y, Yuan GD, Zhang WF, Zapien JA, Belloa I, Zhang WJ, Lee CS, Lee ST: ZnO nanowire arrays grown on Al:ZnO buffer layers and their enhanced electron field emission. / J Appl Phys 2009, 106:064303. CrossRef
  • 作者单位:Wen-Chih Chang (1)
    Cheng-Hsiang Kuo (1)
    Chien-Chang Juan (1)
    Pei-Jung Lee (1)
    Yu-Lun Chueh (1)
    Su-Jien Lin (1)

    1. Department of Materials Science and Engineering, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Rd., Hsinchu, 30013, Taiwan
  • ISSN:1556-276X
文摘
Selective area growth of single crystalline Sn-doped In2O3 (ITO) nanowires synthesized via vapor–liquid–solid (VLS) method at 600°C was applied to improve the field emission behavior owing to the reduction of screen effect. The enhanced field emission performance reveals the reduction of turn-on fields from 9.3 to 6.6 V μm? with increase of field enhancement factors (β) from 1,621 to 1,857 after the selective area growth at 3 h. Moreover, we find that the screen effect also highly depends on the length of nanowires on the field emission performance. Consequently, the turn-on fields increase from 6.6 to 13.6 V μm? with decreasing β values from 1,857 to 699 after the 10-h growth. The detailed screen effect in terms of electrical potential and NW density are investigated in details. The findings provide an effective way of improving the field emission properties for nanodevice application.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700