Pinch-off mechanism for Taylor bubble formation in a microfluidic flow-focusing device
详细信息    查看全文
  • 作者:Yutao Lu (1)
    Taotao Fu (1)
    Chunying Zhu (1)
    Youguang Ma (1)
    Huai Z. Li (2)
  • 关键词:Microfluidics ; Multiphase flow ; Nonlinear dynamics ; Interface ; Confinement ; Pinch ; off
  • 刊名:Microfluidics and Nanofluidics
  • 出版年:2014
  • 出版时间:June 2014
  • 年:2014
  • 卷:16
  • 期:6
  • 页码:1047-1055
  • 全文大小:1,417 KB
  • 参考文献:1. Abadie T, Aubin J, Legendre D, Xuereb C (2012) Hydrodynamics of gas–liquid Taylor flow in rectangular microchannels. Microfluid Nanofluid 12:355-69 CrossRef
    2. Basaran OA (2002) Small-scale free surface flows with breakup: drop formation and emerging applications. AIChE J 48:1842-848 CrossRef
    3. Bergmann R, van der Meer D, Gekle S, van der Bos A, Lohse D (2009) Controlled impact of a disk on a water surface: cavity dynamics. J Fluid Mech 633:381-09 CrossRef
    4. Bird JC, de Ruiter R, Courbin L, Stone HA (2010) Daughter bubble cascades produced by folding of ruptured thin films. Nature 465:759-62 CrossRef
    5. Burton JC, Rutledge JE, Taborek P (2004) Fluid pinch-off dynamics at nanometer length scales. Phys Rev Lett 92:244505
    6. Burton JC, Waldrep R, Taborek P (2005) Scaling and instabilities in bubble pinch-off. Phys Rev Lett 94:184502 CrossRef
    7. Dang M, Yue J, Chen G, Yuan Q (2013) Formation characteristics of Taylor bubbles in a microchannel with a converging shape mixing junction. Chem Eng J 223:99-09 CrossRef
    8. Dollet B, van Hoeve W, Raven JP, Marmottant P, Versluis M (2008) Role of the channel geometry on the bubble pinch-off in flow-focusing devices. Phys Rev Lett 100:034504 CrossRef
    9. Eggers J (1997) Nonlinear dynamics and breakup of free-surface flows. Rev Mod Phys 69:865-30 CrossRef
    10. Eggers J, Villermaux E (2008) Physics of liquid jets. Rep Prog Phys 71:036601 CrossRef
    11. Eggers J, Fontelos MA, Leppinen D, Snoeijer JH (2007) Theory of the collapsing axisymmetric cavity. Phys Rev Lett 98:094502 CrossRef
    12. Ferrara KW, Borden MA, Zhang H (2009) Lipid-shelled vehicles: engineering for ultrasound molecular imaging and drug delivery. Acc Chem Res 42:881-92 CrossRef
    13. Fu T, Ma Y, Funfschilling D, Li HZ (2009) Bubble formation and breakup mechanism in a microfluidic flow-focusing device. Chem Eng Sci 64:2392-400 CrossRef
    14. Fu T, Funfschilling D, Ma Y, Li HZ (2010) Scaling the formation of slug bubbles in microfluidic flow-focusing devices. Microfluid Nanofluid 8:467-75 CrossRef
    15. Fu T, Ma Y, Funfschilling D, Zhu C, Li HZ (2012a) Breakup dynamics of slender bubbles in non-newtonian fluids in microfluidic flow-focusing devices. AIChE J 58:3560-567 CrossRef
    16. Fu T, Wu Y, Ma Y, Li HZ (2012b) Droplet formation and breakup dynamics in microfluidic flow-focusing devices: from dripping to jetting. Chem Eng Sci 84:207-17 CrossRef
    17. Ganan-Calvo AM, Gordillo JM (2001) Perfectly monodisperse microbubbling by capillary flow focusing. Phys Rev Lett 87:274501 CrossRef
    18. Garstecki P, Gitlin I, DiLuzio W, Whitesides GM, Kumacheva E, Stone HA (2004) Formation of monodisperse bubbles in a microfluidic flow-focusing device. Appl Phys Lett 85:2649-651 CrossRef
    19. Garstecki P, Stone HA, Whitesides GM (2005) Mechanism for flow-rate controlled breakup in confined geometries: a route to monodisperse emulsions. Phys Rev Lett 94:164501 CrossRef
    20. Gekle S, Snoeijer JH, Lohse D, van der Meer D (2009) Approach to universality in axisymmetric bubble pinch-off. Phys Rev E 80:036305 CrossRef
    21. González H, García FJ (2009) The measurement of growth rates in capillary jets. J Fluid Mech 619:179-12 CrossRef
    22. Hartman RL, Naber JR, Buchwald SL, Jensen KF (2010) Multistep microchemical synthesis enabled by microfluidic distillation. Angew Chem Int Ed 49:899-03 CrossRef
    23. Hoang DA, Portela LM, Kleijn CR, Kreutzer MT, van Steijn V (2013) Dynamics of droplet breakup in a T-junction. J Fluid Mech 717:R4 CrossRef
    24. Kashid MN, Renken A, Kiwi-Minsker L (2011) Gas–liquid and liquid–liquid mass transfer in microstructured reactors. Chem Eng Sci 66:3876-897 CrossRef
    25. Kreutzer MT, Kapteijn F, Moulijn JA, Kleijn CR, Heiszwolf JJ (2005) Inertial and interfacial effects on pressure drop of Taylor flow in capillaries. AIChE J 51:2428-440 CrossRef
    26. Li W, Liu K, Simms R, Greener J, Jagadeesan D, Pinto S, Günther A, Kumacheva E (2011) Microfluidic study of fast gas–liquid reactions. J Am Chem Soc 134:3127-132 CrossRef
    27. Nghe P, Terriac E, Schneider M, Li ZZ, Cloitre M, Abecassis B, Tabeling P (2011) Microfluidics and complex fluids. Lab Chip 11:788-94 CrossRef
    28. Oguz HN, Prosperetti A (1993) Dynamics of bubble growth and detachment from a needle. J Fluid Mech 257:111-45 CrossRef
    29. Plesset MS (1977) Bubble dynamics and cavitation. Ann Rev Fluid Mech 9:145-85 CrossRef
    30. Sun R, Cubaud T (2011) Dissolution of carbon dioxide bubbles and microfluidic multiphase flows. Lab Chip 11:2924-928 CrossRef
    31. Tadmor AD, Ottesen EA, Leadbetter JR, Phillips R (2011) Probing individual environmental bacteria for viruses by using microfluidic digital PCR. Science 333:58-2 CrossRef
    32. Thoroddsen ST, Etoh TG, Takehara K (2007) Experiments on bubble pinch-off. Phys Fluids 19:042101 CrossRef
    33. Tumarkin E, Nie Z, Park JI, Abolhasani M, Greener J, Sherwood-Lollar B, Gunther A, Kumacheva E (2011) Temperature-controlled ‘breathing-of carbon dioxide bubbles. Lab Chip 11:3545-550 CrossRef
    34. Utada AS, Lorenceau E, Link DR, Kaplan PD, Stone HA, Weitz DA (2005) Monodisperse double emulsions generated from a microcapillary device. Science 308:537-41 CrossRef
    35. van Hoeve W, Dollet B, Versluis M, Lohse D (2011) Microbubble formation and pinch-off scaling exponent in flow-focusing devices. Phys Fluids 23:092001 CrossRef
    36. van Steijn V, Kleijn CR, Kreutzer MT (2009) Flows around confined bubbles and their importance in triggering pinch-off. Phys Rev Lett 103:214501 CrossRef
    37. Wang K, Lu Y, Tan J, Yang B, Luo G (2010) Generating gas/liquid/liquid three-phase microdispersed systems in double T-junctions microfluidic device. Microfluid Nanofluid 8:813-21 CrossRef
    38. W?rner M (2012) Numerical modeling of multiphase flows in microfluidics and micro process engineering: a review of methods and applications. Microfluid Nanofluid 12:841-86 CrossRef
    39. Zhao Y, Chen G, Yuan Q (2007) Liquid–liquid two-phase mass transfer in the T-junction microchannels. AIChE J 53:3042-053 CrossRef
  • 作者单位:Yutao Lu (1)
    Taotao Fu (1)
    Chunying Zhu (1)
    Youguang Ma (1)
    Huai Z. Li (2)

    1. State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
    2. Laboratory of Reactions and Process Engineering, University of Lorraine, CNRS, 1, rue Grandville, BP 20451, 54001, Nancy Cedex, France
  • ISSN:1613-4990
文摘
The present work aims at studying the nonlinear breakup mechanism for Taylor bubble formation in a microfluidic flow-focusing device by using a high-speed digital camera. Experiments were carried out in a square microchannel with cross section of 600?×?600?μm. During the nonlinear collapse process, the variation of the minimum radius of bubble neck (r 0) with the remaining time until pinch-off (τ) can be scaled by a power–law relationship: \(r_{0} \propto \tau^{\alpha } .\) Due to the interface rearrangement around the neck, the nonlinear collapse process can be divided into two distinct stages: liquid squeezing collapse stage and free pinch-off stage. In the liquid squeezing collapse stage, the neck collapses under the constriction of the liquid flow and the exponent α approaches to 0.33 with the increase in the liquid flow rate Q l. In the free pinch-off stage, the value of α is close to the theoretical value of 0.50 derived from the Rayleigh–Plesset equation and is independent of Q l.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700