Experimental studies of melt-peridotite reactions at 1-2 GPa and 1250-1400°C and their implications for transforming the nature of lithospheric mantle and for high-Mg signatures in adakitic rocks
详细信息    查看全文
  • 作者:Yang Yu (1) (2)
    WenLiang Xu (1)
    ChunGuang Wang (1)
  • 关键词:experimental study ; melt ; peridotite reaction ; dunite ; lithospheric mantle ; North China Craton
  • 刊名:Science China Earth Sciences
  • 出版年:2014
  • 出版时间:March 2014
  • 年:2014
  • 卷:57
  • 期:3
  • 页码:415-427
  • 全文大小:1,474 KB
  • 参考文献:1. Allan J F, Dick H J B. 1996. Cr-rich spinel as a tracer for melt migration and melt-wall rock interaction in the mantle: Hess Deep, Leg 147. In: Mével C, Gillis K M, eds. Proceedings of the Ocean Drilling Program, Scientific Results 147. College Station, TX: Ocean Drilling Program. 157-72
    2. Arai S. 1994. Characterization of spinel peridotites by olivine-spinel compositional relationships: Review and interpretation. Chem Geol, 113: 191-04 CrossRef
    3. Bernstein S, Kelemen P B, Hanghoj K. 2007. Consistent olivine Mg# in cratonic mantle reflects Archean mantle melting to the exhaustion of orthopyroxene. Geology, 35: 459-62 CrossRef
    4. Boudier F, Nicolas A. 1985. Harzburgite and lherzolite subtypes in ophiolitic and oceanic environments. Earth Planet Sci Lett, 76: 84-2 CrossRef
    5. Braun M G, Kelemen P B. 2002. Dunite distribution in the Oman ophiolite: Implications for melt flux through porous dunite conduits. Geochem Geophys Geosyst, 3: 8603, doi: 10.1029/2001GC000289 CrossRef
    6. Castillo P R. 2012. Adakite petrogenesis. Lithos, 134: 304-16 CrossRef
    7. Chen L, Tao W, Zhao L, et al. 2008. Distinct lateral variation of lithospheric thickness in the northeastern North China Craton. Earth Planet Sci Lett, 267: 56-8 CrossRef
    8. Deng J F, Su S G, Niu Y L, et al. 2007. A possible model for the lithospheric thinning of North China Craton: Evidence from the Yanshanian (Jura-Cretaceous) magmatism and tectonism. Lithos, 96: 22-5 CrossRef
    9. Dick H J B, Bullen T. 1984. Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas. Contrib Mineral Petrol, 86: 54-6 CrossRef
    10. Fisk M R. 1986. Basalt-magma interactions with harzburgite and the formation of high magnesium andesites. Geophys Res Lett, 13: 467-70 CrossRef
    11. Gao S, Rudnick R L, Yuan H L, et al. 2004. Recycling lower continental crust in the North China craton. Nature, 432: 892-97 CrossRef
    12. Garrido C J, Bodinier J L, Dhuime B, et al. 2007. Origin of the island arc Moho transition zone via melt-rock reaction and its implications for intracrustal gifferentiation of island arcs: Evidence from the Jijal complex (Kohistan complex, northern Pakistan). Geology, 35: 683-86 CrossRef
    13. Griffin W L, Zhang A D, O’Reilly S Y, et al. 1998. Phanerozoic evolution of the lithosphere beneath the Sino-Korean Craton. In: Flower M, Chung S L, Lo C H, et al., eds. Mantle Dynamics and Plate Interactions in East Asia. Am Geophys Union Geodyn Ser, 27: 107-26 CrossRef
    14. Herrmann W, Berry R F. 2002. MINSQ-A least squares spreadsheet method for calculating mineral proportions from whole rock major element analyses. Geochem: Explor, Environ Anal, 2: 361-68
    15. Kay R W. 1978. Aleutian magnesian andesites: Melts from subducted Pacific ocean crust. J Volcanol Geotherm Res, 4: 117-32 CrossRef
    16. Kelemen P B, Hart S R, Bernstein S. 1998. Silica enrichment in the continental upper mantle via melt/rock reaction. Earth Planet Sci Lett, 164: 387-06 CrossRef
    17. Kelemen P B, Joyce D B, Webster J D, et al. 1990. Reaction between ultramafic rock and fractionating basaltic magma (II): Experimental investigation of reaction between olivine tholeiite and harzburgite at 1150-050°C and 5 kb. J Petrol, 31: 99-34 CrossRef
    18. Kelemen P B, Shimizu N, Dunn T. 1993. Relative depletion of niobium in some arc magmas and the continental crust: Partitioning of K, Nb, La and Ce during melt/rock reaction in the upper mantle. Earth Planet Sci Lett, 120: 111-34 CrossRef
    19. Kelemen P B, Whitehead J A, Aharonov E. 1995a. Experiments on flow focusing in soluble porous media, with applications to melt extraction from the mantle. J Geophys Res, 100: 475-96 CrossRef
    20. Kelemen P B, Shimizu N, Salters V J M. 1995b. Extraction of mid-ocean-ridge basalt from the upwelling mantle by focused flow of melt in dunite channels. Nature, 375: 747-53 CrossRef
    21. Kelemen P B. 1995. Genesis of high Mg# andesites and the continental crust. Contrib Mineral Petrol, 120: 1-9 CrossRef
    22. Kelemen P B. 1990. Reaction between ultramafic rock and fractionating basaltic magma (I): Phase relations, the origin of calc-alkaline magma series, and the formation of discordant dunite. J Petrol, 31: 51-8 CrossRef
    23. Kesson S E, Ringwood A E. 1989. Slab-mantle interactions 2, the formation of diamonds. Chem Geol, 78: 97-18 CrossRef
    24. Kubo K. 2002. Dunite formation processes in highly depleted peridotite: Case study of the Iwanaidake peridotite, Hokkaido, Japan. J Petrol, 43: 423-48 CrossRef
    25. Lambart S, Laporte D, Schiano P. 2009. An experimental study of focused magma transport and basalt-peridotite interactions beneath mid-ocean ridges: Implications for the generation of primitive MORB compositions. Contrib Mineral Petrol, 157: 429-51 CrossRef
    26. Mallik A, Dasgupta R. 2012. Reaction between MORB-eclogite derived melts and fertile peridotite and generation of ocean island basalts. Earth Planet Sci Lett, 329: 97-08 CrossRef
    27. Menzies M A, Fan W M, Zhang M. 1993. Palaeozoic and Cenozoic lithoprobes and the loss of >120 km of Archaean lithosphere, Sino-Korean craton, China. In: Prichard H M, Alabaster T, Harris N B W, et al., eds. Magmatic Processes and Plate Tectonics. Geol Soc Spec Pub, 76: 71-1
    28. Menzies M A, Xu Y G, Zhang H F, et al. 2007. Integration of geology, geophysics and geochemistry: A key to understanding the North China Craton. Lithos, 96: 1-1 CrossRef
    29. Menzies M A, Xu Y G. 1998. Geodynamics of the North China Craton. In: Flower M, Chung S L, Lo C H, et al., eds. Mantle Dynamics and Plate Interactions in East Asia. Am Geophys Union Geodyn Ser, 27: 155-65 CrossRef
    30. Morgan Z, Liang Y. 2005. An experimental study of the kinetics of lherzolite reactive dissolution with applications to melt channel formation. Contrib Mineral Petrol, 150: 369-85 CrossRef
    31. Mysen B O, Kushiro I. 1977. Compositional variations of coexisting phases with degree of melting of peridotite in the upper mantle. Am Mineral, 62: 843-56
    32. Pei F P, Xu W L, Wang Q H, et al. 2004. Mesozoic basalt and mineral chemistry of the mantle-derived xenocrysts in Feixian, western Shandong, China: Constrains on nature of Mesozoic lithospheric mantle (in Chinese). Geol J China U, 10: 88-7
    33. Piccardo G B, Zanetti A, Müntener O. 2007. Melt/peridotite interaction in the Southern Lanzo peridotite: Field, textural and geochemical evidence. Lithos, 94: 181-09 CrossRef
    34. Rapp R P, Shimizu N, Norman M D, et al. 1999. Reaction between slab-derived melts and peridotite in the mantle wedge: Experimental constraints at 3.8 GPa. Chem Geol, 160: 335-56 CrossRef
    35. Rapp R P. 1997. Heterogeneous source regions for Archean granitoids. In: de Wit M J, Ashwal L D, eds. Greenstone Belts. Oxford: Oxford University Press. 35-7
    36. Roeder P L, Emslie R F. 1970. Olivine-liquid equilibrium. Contrib Mineral Petrol, 29: 275-89 CrossRef
    37. Sen C, Dunn T. 1994. Experimental modal metasomatism of a spinel lherzolite and the production of amphibole-bearing peridotite. Contrib Mineral Petrol, 119: 422-32 CrossRef
    38. Shaw C S J, Dingwell D B. 2008. Experimental peridotite-melt reaction at one atmosphere: A textural and chemical study. Contrib Mineral Petrol, 155: 199-14 CrossRef
    39. Wang C, Jin Z M, Gao S, et al. 2010. Eclogite-melt/peridotite reaction: Experimental constrains on the destruction mechanism of the North China Craton. Sci China Earth Sci, 53: 797-09 CrossRef
    40. Wang D Y. 2002. Petrology and geochemistry of mafic-ultramafic inclusions in Mesozoic igneous rocks from western Shandong and western Liaoning: Implication for nature of Mesozoic lithospheric mantle (in Chinese). Doctoral Dissertation. Changchun: Jilin University
    41. Wang Q, Li Z X, Chung S L, et al. 2011. Late Triassic high-Mg andesite/dacite suites from northern Hohxil, North Tibet: Geochronology, geochemical characteristics, petrogenetic processes and tectonic implications. Lithos, 126: 54-7 CrossRef
    42. Wu F Y, Lin J Q, Wilde S A, et al. 2005. Nature and significance of the Early Cretaceous giant igneous event in eastern China. Earth Planet Sci Lett, 233: 103-19 CrossRef
    43. Xu W L, Gao S, Wang Q H, et al. 2006. Mesozoic crustal thickening of the eastern North China Craton: Evidence from eclogite xenoliths and petrologic implications. Geology, 34: 721-24 CrossRef
    44. Xu W L, Gao S, Yang D B, et al. 2009. Geochemistry of eclogite xenoliths in Mesozoic adakitic rocks from Xuzhou-Suzhou area in central China and their tectonic implications. Lithos, 107: 269-80 CrossRef
    45. Xu W L, Hergt J M, Gao S, et al. 2008. Interaction of adakitic meltperidotite: Implications for the high-Mg# signature of Mesozoic adakitic rocks in the eastern North China Craton. Earth Planet Sci Lett, 265: 123-37 CrossRef
    46. Xu W L, Wang D Y, Gao S, et al. 2003. Discovery of dunite and pyroxenite xenoliths in Mesozoic diorite at Jinling, western Shandong and its significance. Chin Sci Bull, 48: 1599-604
    47. Xu W L, Wang D Y, Wang Q H, et al. 2004. Metasomatism of silica-rich melts (liquids) in dunite xenoliths from western Shandong, China: Implication for Mesozoic lithospheric mantle thinning (in Chinese). Acta Geol Sin, 78: 72-0
    48. Xu W L, Yang D B, Gao S, et al. 2010. Geochemistry of peridotite xenoliths in Early Cretaceous high-Mg# diorites from the Central Orogenic Block of the North China Craton: The nature of Mesozoic lithospheric mantle and constraints on lithospheric thinning. Chem Geol, 270: 257-73 CrossRef
    49. Xu Y G. 2001. Thermo-tectonic destruction of the Archaean lithospheric keel beneath the Sino-Korean Craton in China: Evidence, timing and mechanism. Phys Chem Earth (A), 26: 747-57 CrossRef
    50. Yaxley G M, Green D H. 1998. Reactions between eclogite and peridotite: Mantle refertilisation by subduction of oceanic crust. Schweiz Mineral Petrogr Mitt, 78: 243-55
    51. Yaxley G M. 2000. Experimental study of the phase and melting relations of homogeneous basalt + peridotite mixtures and implications for the petrogenesis of flood basalts. Contrib Mineral Petrol, 139: 326-38 CrossRef
    52. Yogodzinski G M, Kelemen P B. 2007. Trace elements in clinopyroxenes from Aleutian xenoliths: Implications for primitive subduction magmatism in an island arc. Earth Planet Sci Lett, 256: 617-32 CrossRef
    53. Yogodzinski G M, Volynets O N, Koloskov A V, et al. 1994. Magnesian andesites and the subduction component in a strongly calc-alkaline series at Piip Volcano, far western Aleutians. J Petrol, 35: 163-04 CrossRef
    54. Yu Y, Xu W L, Liu X Y, et al. 2009. Hb-Grt-pyroxenite-peridotite reaction at 3.5 GPa and 1500°C: Preliminary experimental results and its geological implications (in Chinese). Prog Nat Sci, 19: 644-51
    55. Zhang J F, Wang C, Wang Y F. 2012. Experimental constraints on the destruction mechanism of the North China Craton. Lithos, 149: 91-9 CrossRef
    56. Zhang J, Zhang H F, Yin J F, et al. 2005. Are the peridotitic xenoliths entrained in Late Mesozoic intermediate-mafic intrusive complexes on the North China Craton: The direct samples of lithospheric mantle? (in Chinese) Acta Petrol Sin, 21: 1559-568
    57. Zheng C Q, Xu W L, Wang D Y. 1999. The petrology and mineral chemistry of the deep-seated xenoliths in Mesozoic basalt in Fuxin district from western Liaoning (in Chinese). Acta Petrol Sin, 15: 616-22
  • 作者单位:Yang Yu (1) (2)
    WenLiang Xu (1)
    ChunGuang Wang (1)

    1. College of Earth Sciences, Jilin University, Changchun, 130061, China
    2. Research Center of Palaenotology and Stratigraphy, Jilin University, Changchun, 130026, China
  • ISSN:1869-1897
文摘
Experiments of the melt-peridotite reaction at pressures of 1 and 2 GPa and temperatures of 1250-400°C have been carried out to understand the nature of the peridotite xenoliths in the Mesozoic high-Mg diorites and basalts of the North China Craton, and further to elucidate the processes in which the Mesozoic lithospheric mantle in this region was transformed. We used Fuxin alkali basalt, Feixian alkali basalt, and Xu-Huai hornblende-garnet pyroxenite as starting materials for the reacting melts, and lherzolite xenoliths and synthesized harzburgite as starting materials for the lithospheric mantle. The experimental results indicate that: (1) the reactions between basaltic melts and lherzolite and harzburgite at 1- GPa and 1300-400°C tended to dissolve pyroxene and precipitate low-Mg# olivine (Mg#=83.6-89.3), forming sequences of dunite-lherzolite (D-L) and duniteharzburgite (D-H), respectively; (2) reactions between hornblende-garnet pyroxenite and lherzolite at 1 GPa and 1250°C formed a D-H sequence, whereas reactions at 2 GPa and 1350°C formed orthopyroxenite layers and lherzolite; and (3) the reaction between a partial melt of hornblende-garnet pyroxenite and harzburgite resulted in a layer of orthopyroxenite at the boundary of the pyroxenite and harzburgite. The reacted melts have higher MgO abundances than the starting melts, demonstrating that the melt-peridotite reactions are responsible for the high-Mg# signatures of andesites or adakitic rocks. Our experimental results support the proposition that the abundant peridotite and pyroxenite xenoliths in western Shandong and the southern Taihang Mountains might have experienced multiple modifications in reaction to a variety of melts. We suggest that melt-peridotite reactions played important roles in transforming the nature of the Mesozoic lithospheric mantle in the region of the North China Craton.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700