TiO2-reduced graphene oxide nanocomposite for high-rate application of lithium ion batteries
详细信息    查看全文
  • 作者:Chuchun Zheng ; Chunhua He ; Haiyan Zhang ; Wenguang Wang ; Xinling Lei
  • 关键词:Reduced graphene oxide ; TiO2 ; Nanocomposite ; Lithium ; ion battery
  • 刊名:Ionics
  • 出版年:2015
  • 出版时间:January 2015
  • 年:2015
  • 卷:21
  • 期:1
  • 页码:51-58
  • 全文大小:1,941 KB
  • 参考文献:1. Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359-67 CrossRef
    2. Armand M, Tarascon JM (2008) Building better batteries. Nature 451:652-57 CrossRef
    3. Deng D, Kim MG, Lee JY, Cho J (2009) Green energy storage materials: nanostructured TiO2 and Sn-based anodes for lithium-ion batteries. Energy Environ Sci 2:818-37 CrossRef
    4. Reddy MV, Subba Rao GV, Chowdari BVR (2013) Metal oxides and oxysalts as anode materials for li ion batteries. Chem Rev 113:5364-457 CrossRef
    5. Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon JM (2000) Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407:496-99 CrossRef
    6. Brousse T, Marchand R, Taberna PL, Simon P (2006) TiO2 (B)/activated carbon non-aqueous hybrid system for energy storage. J Power Sources 158:571-77 CrossRef
    7. Wang K, Wei M, Morris MA, Zhou H, Holmes JD (2007) Mesoporous titania nanotubes: their preparation and application as electrode materials for rechargeable lithium batteries. Adv Mater 19:3016-020 CrossRef
    8. Perera SD, Mariano RG, Vu K, Nour N, Seitz O, Chabal Y, Balkus KJ Jr (2012) Hydrothermal synthesis of graphene-TiO2 nanotube composites with enhanced photocatalytic activity. ACS Catal 2:949-56 CrossRef
    9. Cao H, Li B, Zhang J, Lian F, Kong X, Qu M (2012) Synthesis and superior anode performance of TiO2-reduced graphene oxide nanocomposites for lithium ion batteries. J Mater Chem 22:9759-766 CrossRef
    10. Cai D, Li D, Wang S, Zhu X, Yang W, Zhang S, Wang H (2013) High rate capability of TiO2/nitrogen-doped graphene nanocomposite as an anode material for lithium–ion batteries. J Alloys Compd 561:54-8 CrossRef
    11. Tao HC, Fan LZ, Yan X, Qu X (2012) In situ synthesis of TiO2-graphene nanosheets composites as anode materials for high-power lithium ion batteries. Electrochim Acta 69:328-33 CrossRef
    12. Zhang F, Cao H, Yue D, Zhang J, Qu M (2012) Enhanced anode performances of polyaniline-TiO2-reduced graphene oxide nanocomposites for lithium ion batteries. Inorg Chem 51:9544-551 CrossRef
    13. Qiu J, Zhang P, Ling M, Li S, Liu P, Zhao H, Zhang S (2012) Photocatalytic synthesis of TiO2 and reduced graphene oxide nanocomposite for lithium ion battery. ACS Appl Mater Interfaces 4:3636-642 CrossRef
    14. Dong L, Li M, Zhao ML (2012) Hydrothermal synthesis of mixed crystal phases TiO2-reduced graphene oxide nanocomposites with small particle size for lithium ion batteries. Int J Hydrog Energy 14:3081-087
    15. Wang H, Robinson JT, Diankov G, Dai H (2013) Nanocrystal growth on graphene with various degrees of oxidation. J Am Chem Soc 132:3270-271 CrossRef
    16. Wang D, Choi D, Li J, Yang Z, Nie Z, Kou R, Liu J (2009) Self-assembled TiO2-graphene hybrid nanostructures for enhanced Li-ion insertion. ACS Nano 3:907-14 CrossRef
    17. Chen X, Mao SS (2010) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107:2891-959
文摘
TiO2-reduced graphene oxide nanocomposite has been synthesized by a facile hydrothermal process. The structure and morphology have been characterized by X-ray diffraction and scanning electron microscopy. The result shows that a unique nanocomposite has been obtained with the TiO2 nanoparticle homogenously dispersed onto the reduced graphene oxide sheets. The electrochemistry performance has been tested through cyclic voltammetry, constant current discharge/charge tests, and electrochemical impedance techniques. The initial lithium ion storage capacity is 368?mAhg? at the rate of 10?mAg?, which exceeds the theoretical capacity value of the anatase TiO2 (335?mAhg?). The nanocomposite exhibits good high-rate capacity of 136.1?mAhg? at rate of 1,000?mAg?, and, after 100?cycles, the coulombic efficiency is still maintained as high as 98.6?%. The high specific capacity and good stability can be attributed to the unique structures and make the nanocomposite a promising substitute of the current commercial graphite anode in high-power, high-rate application of lithium ion batteries.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700