Theoretical studies of the structure, stability, and detonation properties of vicinal-tetrazine 1,3-dioxide annulated with a five-membered heterocycle. 2. Annulation with a pyrazole ring
详细信息    查看全文
  • 作者:Tianyi Wang ; Chunmei Zheng ; Xuedong Gong ; Mingzhu Xia
  • 关键词:Detonation performance ; DFT ; Pyrazole ; Stability ; 1 ; 2 ; 3 ; 4 ; Tetrazine
  • 刊名:Journal of Molecular Modeling
  • 出版年:2015
  • 出版时间:October 2015
  • 年:2015
  • 卷:21
  • 期:10
  • 全文大小:1,956 KB
  • 参考文献:1.Tang Y, Yang H, Cheng G (2013) Synthesis and characterization of a stable, catenated N11 energetic salt. Angew Chem Int Ed 52:1鈥?CrossRef
    2.Wu Q, Zhu W, Xiao H (2014) A new design strategy for high-energy low-sensitivity explosives: combining oxygen balance equal to zero, a combination of nitro and amino groups, and N-oxide in one molecule of 1-amino-5-nitrotetrazole-3N-oxide. J Mater Chem A 2:13006鈥?3015CrossRef
    3.Politzer P, Lane P, Murray JS (2013) Computational analysis of relative stabilities of polyazine N-oxides. Struct Chem 24:1965鈥?974CrossRef
    4.Politzer P, Lane P, Murray JS (2013) Tricyclic polyazine N-oxides as proposed energetic compounds. Cent Eur J Energ Mater 10:305鈥?23
    5.Politzer P, Lane P, Murray JS (2013) Computational characterization of two Di-1,2,3,4-tetrazine tetraoxides, DTTO and iso-DTTO, as potential energetic compounds. Cent Eur J Energ Mater 10:37鈥?2
    6.Ye C, An Q, Goddard WA, Cheng T, Liu W, Zybin SV, Ju X (2015) Initial decomposition reaction of di-tetrazine-tetroxide (DTTO) from quantum molecular dynamics: implications for a promising energetic material. J Mater Chem A 3:1972鈥?978CrossRef
    7.Piercey DG, Chavez DE, Heimsch S, Kirst C, Klap枚tke TM, Stierstorfer J (2014) An energetic N-oxide and N-amino heterocycle and its transformation to 1,2,3,4-tetrazine-1-oxide. Propellants Explos Pyrotech. doi:10.鈥?002/鈥媝rep.鈥?01400224
    8.Wang T, Zheng C, Yang J, Zhang X, Gong X, Xia M (2014) Theoretical studies on a new high energy density compound 6-amino-7-nitropyrazino[2,3-e][1,2,3,4]tetrazine 1,3,5-trioxide (ANPTTO). J Mol Model 20:2261鈥?271CrossRef
    9.Churakov AM, Tartakovsky VA (2004) Progress in 1,2,3,4-tetrazine chemistry. Chem Rev 104:2601鈥?616CrossRef
    10.Bi F, Wang B, Li X, Fan X, Cheng X, Ge Z (2012) Progress in the energetic materials based on 1,2,3,4-tetrazine 1,3-dioxide. Chin J Energ Mater 5:630鈥?37
    11.Klap枚tke TM, Piercey DG, Stierstorfer J, Weyrauther M (2012) The synthesis and energetic properties of 5,7-dinitrobenze-1,2,3,4-tetrazine-1,3-dioxide. Propellants Explos Pyrotech 37:527鈥?35CrossRef
    12.Voronin AA, Zelenov VP, Churakov AM, Strelenko YA, Fedyanin IV, Tartakovsky VA (2014) Synthesis of 1,2,3,4-tetrazine 1,3-dioxides annulated with 1,2,3-triazoles and 1,2,3-triazole 1-oxides. Tetrahedron 70:3018鈥?022CrossRef
    13.Voronin AA, Zelenov VP, Churakov AM, Strelenko YA, Tartakovsky VA (2014) Alkylation of 1-hydroxy-1H-[1,2,3]triazolo[4,5-e][1,2,3,4]tetrazine 5,7-dioxide. Russ Chem Bull Int Ed 63:475鈥?79CrossRef
    14.Churakov AM, Ioffe SL, Tarakovsky VA (1995) Synthesis of [1,2,5]oxadiazolo[3,4-e][1,2,3,4]tetrazine 4,6-di-N-oxide. Mendeleev Commun 5:227鈥?28CrossRef
    15.Zelenov VP, Lobanova AA, Lyukshenko NI, Sysolyatin SV, Kalashnikov AI (2008) Behavior of [1,2,5]oxadiazolo[3,4-e][1,2,3,4]tetrazine 4,6-dioxide in various media. Russ Chem Bull Int Ed 57:1384鈥?389CrossRef
    16.Zelenov VP, Lobanova AA, Sysolyatin SV, Sevodina NV (2013) New syntheses of [1,2,5]oxadiazolo[3,4-e][1,2,3,4]tetrazine 4,6-dioxide. Russ J Org Chem 49:467鈥?77CrossRef
    17.Wang T, Zhang T, Xu L, Wu X, Gong X, Xia M (2014) Theoretical studies on vicinal-tetrazine compounds: furoxano-1,2,3,4-tetrazine-1,3,5-trioxide (FTTO-伪) and furoxano-1,2,3,4-tetrazine-1,3,7-trioxide (FTTO-尾). J Mol Model 20:2516鈥?527CrossRef
    18.Wang T, Zheng C, Liu Y, Gong X, Xia M (2015) Theoretical studies of structure, stability and detonation properties of vicinal-tetrazine 1,3-dioxide annulated with a five-membered heterocycle 1. Annulation with a triazole ring. J Mol Model 21:201鈥?09. doi:10.鈥?007/鈥媠00894-015-2748-4
    19.Tartakovsky VA, Filatov IE, Churakov AM, Ioffe SL, Strelenko YA, Kuz鈥檓in VS, Rusinov GL, Pashkevich KI (2004) Synthesis and structures of pyridoannelated 1,2,3,4-tetrazine 1,3-dioxides. Rus Chem Bull 53:2577鈥?583CrossRef
    20.Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven JT, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, revision B.05. Gaussian, Wallingford
    21.Wheeler SE, Houk KN, Schleyer PVR, Allen WD (2009) A hierarchy of homodesmotic reactions for thermochemistry. J Am Chem Soc 131:2547鈥?560CrossRef
    22.Politzer P, Ma Y, Lane P, Concha MC (2005) Computational prediction of standard gas, liquid, and solid-phase heats of formation and heats of vaporization and sublimation. Int J Quantum Chem 105:341鈥?47CrossRef
    23.Politzer P, Martinez J, Murray JS, Concha MC, Toro-Labbe A (2009) An electrostatic interaction correction for improved crystal density prediction. Mol Phys 107:2095鈥?101CrossRef
    24.Kamlet M, Jacobs SJ (1968) Chem Phys 48:23
    25.Xiao HM, Xu XJ, Qiu L (2008) Theoretical design of high energy density materials. Science Press, Beijing
    26.Politzer P, Murray JS (2011) Some perspective on estimating detonation properties of C, H, N, O compounds. Cent Eur J Energ Mater 8:209鈥?20
    27.Politzer P, Murray JS (1996) Relationships between dissociation energies and electrostatic potentials of C-NO2 bonds: applications to impact sensitivities. J Mol Struct 376:419鈥?24CrossRef
    28.Zhang C, Shu Y, Huang Y, Zhao X, Dong H (2005) Investigation of correlation between impact sensitivities and nitro group charges in nitro compounds. J Phys Chem B 109:8978鈥?982CrossRef
    29.Xiao H, Li Y (1995) Banding and electronic structures of metal azides 鈥?sensitivity and conductivity. Sci Chin Ser B 38:538鈥?45
    30.Politzer P, Murray JS, Concha MC (1998) C-H and C-NO2 dissociation energies in some azines and nitroazines. J Phys Chem A 102:6697鈥?701CrossRef
    31.Cao X, Xiang B, Zhang C (2012) Review on relationships between the molecular and crystal structure of explosives and their sensitivities. Chin J Energ Mater 5:643鈥?49
    32.Tan B, Long X, Peng R, Li H, Jin B, Chu S (2011) On the shock sensitivity of explosive compounds with small-scale gap test. J Phys Chem A 115:10610鈥?0616CrossRef
    33.Tan B, Long X, Li J, Nie F (2012) Insight into shock-induced chemical reaction from the perspective of ring strain and rotation of chemical bonds. J Mol Model 18:5127鈥?132CrossRef
    34.Dlott DD (2003) Fast molecular aspects in energetic materials. In: Politzer P, Murray JS (eds) Energetic materials. Part 2. Detonation, combustion, vol 6. Elsevier, Amsterdam, pp 125鈥?91CrossRef
    35.Tsai DH, Armstrong RW (1994) Defect-enhanced structural relaxation mechanism for the evolution of hot spots in rapidly compressed crystals. J Phys Chem 98:10997鈥?1000CrossRef
    36.Kunz AB (1996) An ab initio investigation of crystalline PETN. Mater Res Soc Symp Proc 418:287鈥?92CrossRef
    37.Rice BM, Mattson W, Trevino SF (1998) Molecular-dynamics investigation of the desensitization of detonable material. Phys Rev E 57:5106鈥?111CrossRef
    38.Tarver CM, Urtiew PA, Tran TD (2005) Sensitivity of 2,6-Diamino-3,5-dinitropyrazine-1-oxide. J Energ Mater 23:183鈥?03CrossRef
    39.Pospisil M, Vavra P, Concha MC, Murray JS, Politzer P (2011) Sensitivity and the available free space per molecule in the unit cell. J Mol Model 17:2569鈥?574CrossRef
    40.Lide DR (2009) CRC handbook of chemistry and physics, 2010th ed. CSC Press, Boca Raton
    41.Thomas JR, Quelch GE, Schaefer HF III (1997) The unknown unsubstituted tetrazines:1,2,3,4-tetrazine and 1,2,3,5-tetrazine. J Org Chem 56:539鈥?43CrossRef
    42.Tartakovsky VA (1996) The design of stable high nitrogen systems. Mater Res Soc Symp Proc 418:15鈥?4CrossRef
    43.Politzer P, Murray JS (2015) Some molecular/crystalline factors that affect the sensitivities of energetic materials: molecular surface electrostatic potentials, lattice free space and maximum heat of detonation per unit volume. J Mol Model 21(25):1鈥?1. doi:10.鈥?007/鈥媠00894-015-2578-4
  • 作者单位:Tianyi Wang (1)
    Chunmei Zheng (1)
    Xuedong Gong (1)
    Mingzhu Xia (1)

    1. Department of Chemistry, Nanjing University of Science and Technology, Nanjing, 210094, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Computer Applications in Chemistry
    Biomedicine
    Molecular Medicine
    Health Informatics and Administration
    Life Sciences
    Computer Application in Life Sciences
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:0948-5023
文摘
1,2,3,4-Tetrazine (vicinal-tetrazine) high-energy-density compounds (HEDCs) are receiving increasing attention due to their promise as explosives. We have performed a series of studies of vicinal-tetrazine 1,3-dioxides annulated with a range of five-membered heterocycles, considering their potential as high-energy, low-sensitivity explosives. In the present work, 12 pyrazolo-1,2,3,4-tetrazine 1,3-dioxides (pyrazolo-TDOs), P1-P12, were studied theoretically. Their geometrical structures in the gas phase were studied at the B3LYP/6-311++G(d,p) level of density functional theory (DFT). Their gas-phase enthalpies of formation were calculated by the homodesmotic reaction method. Their enthalpies of sublimation and solid phase enthalpies of formation were also predicted. Their detonation properties were estimated with the Kamlet-Jacobs equations, based on their predicted densities and enthalpies of formation in the solid state. Their bond dissociation activation energies (BDAEs) and the available free space in the lattice of each compound were calculated to evaluate their stabilities. P1, P4, and P11 were found to achieve the energy level of RDX and have acceptable stabilities, and are therefore considered to be the three most promising pyrazolo-TDOs for use as high-energy, low-sensitivity explosives. We believe that further studies, both experimental and theoretical, of these three targets would be worthwhile. Keywords Detonation performance DFT Pyrazole Stability 1,2,3,4-Tetrazine

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700